您好,登录后才能下订单哦!
这篇文章主要讲解了“javascript数据结构之多叉树怎么实现”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“javascript数据结构之多叉树怎么实现”吧!
1、创造一个节点
数据是以节点的形式存储的:
class Node { constructor(data) { this.data = data; this.parent = null; this.children = []; } }
2、创造树
树用来连接节点,就像真实世界树的主干一样,延伸着很多分支
class MultiwayTree { constructor() { this._root = null; } }
3、添加一个节点
function add(data, toData, traversal) { let node = new Node(data) // 第一次添加到根节点 // 返回值为this,便于链式添加节点 if (this._root === null) { this._root = node; return this; } let parent = null, callback = function(node) { if (node.data === toData) { parent = node; return true; } }; // 根据遍历方法查找父节点(遍历方法后面会讲到),然后把节点添加到父节点 // 的children数组里 // 查找方法contains后面会讲到 this.contains(callback, traversal); if (parent) { parent.children.push(node); node.parent = parent; return this; } else { throw new Error('Cannot add node to a non-existent parent.'); } }
4、深度优先遍历
深度优先会尽量先从子节点查找,子节点查找完再从兄弟节点查找,适合数据深度比较大的情况,如文件目录
function traverseDF(callback) { let stack = [], found = false; stack.unshift(this._root); let currentNode = stack.shift(); while(!found && currentNode) { // 根据回调函数返回值决定是否在找到第一个后继续查找 found = callback(currentNode) === true ? true : false; if (!found) { // 每次把子节点置于堆栈最前头,下次查找就会先查找子节点 stack.unshift(...currentNode.children); currentNode = stack.shift(); } } }
5、广度优先遍历
广度优先遍历会优先查找兄弟节点,一层层往下找,适合子项较多情况,如公司岗位级别
function traverseBF(callback) { let queue = [], found = false; queue.push(this._root); let currentNode = queue.shift(); while(!found && currentNode) { // 根据回调函数返回值决定是否在找到第一个后继续查找 found = callback(currentNode) === true ? true : false; if (!found) { // 每次把子节点置于队列最后,下次查找就会先查找兄弟节点 queue.push(...currentNode.children) currentNode = queue.shift(); } } }
6、包含节点
function contains(callback, traversal) { traversal.call(this, callback); }
回调函数算法可自己根据情况实现,灵活度较高
7、移除节点
// 返回被移除的节点 function remove(data, fromData, traversal) { let parent = null, childToRemove = null, callback = function(node) { if (node.data === fromData) { parent = node; return true; } }; this.contains(callback, traversal); if (parent) { let index = this._findIndex(parent.children, data); if (index < 0) { throw new Error('Node to remove does not exist.'); } else { childToRemove = parent.children.splice(index, 1); } } else { throw new Error('Parent does not exist.'); } return childToRemove; }
_findIndex实现:
function _findIndex(arr, data) { let index = -1; for (let i = 0, len = arr.length; i < len; i++) { if (arr[i].data === data) { index = i; break; } } return index; }
完整算法
class Node { constructor(data) { this.data = data; this.parent = null; this.children = []; } } class MultiwayTree { constructor() { this._root = null; } //深度优先遍历 traverseDF(callback) { let stack = [], found = false; stack.unshift(this._root); let currentNode = stack.shift(); while(!found && currentNode) { found = callback(currentNode) === true ? true : false; if (!found) { stack.unshift(...currentNode.children); currentNode = stack.shift(); } } } //广度优先遍历 traverseBF(callback) { let queue = [], found = false; queue.push(this._root); let currentNode = queue.shift(); while(!found && currentNode) { found = callback(currentNode) === true ? true : false; if (!found) { queue.push(...currentNode.children) currentNode = queue.shift(); } } } contains(callback, traversal) { traversal.call(this, callback); } add(data, toData, traversal) { let node = new Node(data) if (this._root === null) { this._root = node; return this; } let parent = null, callback = function(node) { if (node.data === toData) { parent = node; return true; } }; this.contains(callback, traversal); if (parent) { parent.children.push(node); node.parent = parent; return this; } else { throw new Error('Cannot add node to a non-existent parent.'); } } remove(data, fromData, traversal) { let parent = null, childToRemove = null, callback = function(node) { if (node.data === fromData) { parent = node; return true; } }; this.contains(callback, traversal); if (parent) { let index = this._findIndex(parent.children, data); if (index < 0) { throw new Error('Node to remove does not exist.'); } else { childToRemove = parent.children.splice(index, 1); } } else { throw new Error('Parent does not exist.'); } return childToRemove; } _findIndex(arr, data) { let index = -1; for (let i = 0, len = arr.length; i < len; i++) { if (arr[i].data === data) { index = i; break; } } return index; } }
控制台测试代码
var tree = new MultiwayTree(); tree.add('a') .add('b', 'a', tree.traverseBF) .add('c', 'a', tree.traverseBF) .add('d', 'a', tree.traverseBF) .add('e', 'b', tree.traverseBF) .add('f', 'b', tree.traverseBF) .add('g', 'c', tree.traverseBF) .add('h', 'c', tree.traverseBF) .add('i', 'd', tree.traverseBF); console.group('traverseDF'); tree.traverseDF(function(node) { console.log(node.data); }); console.groupEnd('traverseDF'); console.group('traverseBF'); tree.traverseBF(function(node) { console.log(node.data); }); console.groupEnd('traverseBF'); // 深度优先查找 console.group('contains1'); tree.contains(function(node) { console.log(node.data); if (node.data === 'f') { return true; } }, tree.traverseDF); console.groupEnd('contains1') // 广度优先查找 console.group('contains2'); tree.contains(function(node) { console.log(node.data); if (node.data === 'f') { return true; } }, tree.traverseBF); console.groupEnd('contains2'); tree.remove('g', 'c', tree.traverseBF);
运行效果如下:
感谢各位的阅读,以上就是“javascript数据结构之多叉树怎么实现”的内容了,经过本文的学习后,相信大家对javascript数据结构之多叉树怎么实现这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。