R语言如何实现Cox回归模型

发布时间:2022-01-20 14:48:27 作者:iii
来源:亿速云 阅读:1539

这篇“R语言如何实现Cox回归模型”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“R语言如何实现Cox回归模型”文章吧。

R语言中的Cox模型分析

单变量Cox回归

summary(res.cox)
res.cox <- coxph(Surv(time, status) ~ sex, data =  lung)
summary(res.cox)

summary的结果:

Call:
coxph(formula = Surv(time, status) ~ sex, data = lung)
  n= 228, number of events= 165 
       coef exp(coef) se(coef)      z Pr(>|z|)   
sex -0.5310    0.5880   0.1672 -3.176  0.00149 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    exp(coef) exp(-coef) lower .95 upper .95
sex     0.588      1.701    0.4237     0.816
Concordance= 0.579  (se = 0.021 )
Likelihood ratio test= 10.63  on 1 df,   p=0.001
Wald test            = 10.09  on 1 df,   p=0.001
Score (logrank) test = 10.33  on 1 df,   p=0.001

Cox回归结果可以解释如下:

统计显着性。标记为“z”的列给出了Wald统计值。它对应于每个回归系数与其标准误差的比率(z = coef / se(coef))。wald统计评估是否beta(ββ)系数在统计上显着不同于0。从上面的输出,我们可以得出结论,变量性别具有高度统计学意义的系数。

回归系数。Cox模型结果中要注意的第二个特征是回归系数(coef)的符号。一个积极的信号意味着危险(死亡风险)较高,因此对于那些变量值较高的受试者,预后更差。变量性别编码为数字向量。1:男,2:女。Cox模型的R总结给出了第二组相对于第一组,即女性与男性的风险比(HR)。性别的β系数= -0.53表明在这些数据中,女性的死亡风险(低存活率)低于男性。

危害比例。指数系数(exp(coef)= exp(-0.53)= 0.59)也称为风险比,给出协变量的效应大小。例如,女性(性别= 2)将危害降低了0.59倍,即41%。女性与预后良好相关。

风险比的置信区间。总结结果还给出了风险比(exp(coef))的95%置信区间的上限和下限,下限95%界限= 0.4237,上限95%界限= 0.816。

全球统计学意义的模型。最后,输出为模型的总体显着性提供了三个替代测试的p值:可能性比率测试,Wald测试和得分logrank统计。这三种方法是渐近等价的。对于足够大的N,他们会得到相似的结果。对于小N来说,它们可能有所不同。似然比检验对于小样本量具有更好的表现,所以通常是优选的。

批量单变量cox分析
covariates <- c("age", "sex",  "ph.karno", "ph.ecog", "wt.loss")
univ_formulas <- sapply(covariates,
                        function(x) as.formula(paste('Surv(time, status)~', x)))
                        
univ_models <- lapply( univ_formulas, function(x){coxph(x, data = lung)})
# Extract data 
univ_results <- lapply(univ_models,
                       function(x){ 
                          x <- summary(x)
                          p.value<-signif(x$wald["pvalue"], digits=2)
                          wald.test<-signif(x$wald["test"], digits=2)
                          beta<-signif(x$coef[1], digits=2);#coeficient beta
                          HR <-signif(x$coef[2], digits=2);#exp(beta)
                          HR.confint.lower <- signif(x$conf.int[,"lower .95"], 2)
                          HR.confint.upper <- signif(x$conf.int[,"upper .95"],2)
                          HR <- paste0(HR, " (", 
                                       HR.confint.lower, "-", HR.confint.upper, ")")
                          res<-c(beta, HR, wald.test, p.value)
                          names(res)<-c("beta", "HR (95% CI for HR)", "wald.test", 
                                        "p.value")
                          return(res)
                          #return(exp(cbind(coef(x),confint(x))))
                         })
res <- t(as.data.frame(univ_results, check.names = FALSE))
as.data.frame(res)
           beta HR (95% CI for HR) wald.test p.value
age       0.019            1 (1-1)       4.1   0.042
sex       -0.53   0.59 (0.42-0.82)        10  0.0015
ph.karno -0.016      0.98 (0.97-1)       7.9   0.005
ph.ecog    0.48        1.6 (1.3-2)        18 2.7e-05
wt.loss  0.0013         1 (0.99-1)      0.05    0.83

多变量Cox回归

要一次性将单变量coxph函数应用于多个协变量,请输入:

res.cox <- coxph(Surv(time, status) ~ age + sex + ph.ecog, data =  lung)
summary(res.cox)
Call:
coxph(formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung)

  n= 227, number of events= 164 
   (1 observation deleted due to missingness)

             coef exp(coef)  se(coef)      z Pr(>|z|)    
age      0.011067  1.011128  0.009267  1.194 0.232416    
sex     -0.552612  0.575445  0.167739 -3.294 0.000986 ***
ph.ecog  0.463728  1.589991  0.113577  4.083 4.45e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

        exp(coef) exp(-coef) lower .95 upper .95
age        1.0111     0.9890    0.9929    1.0297
sex        0.5754     1.7378    0.4142    0.7994
ph.ecog    1.5900     0.6289    1.2727    1.9864

Concordance= 0.637  (se = 0.025 )
Likelihood ratio test= 30.5  on 3 df,   p=1e-06
Wald test            = 29.93  on 3 df,   p=1e-06
Score (logrank) test = 30.5  on 3 df,   p=1e-06

所有3个整体测试(可能性,Wald 和 得分)的p值都是显着的,表明该模型是显着的。这些测试评估了所有的beta(ββ)为0.在上面的例子中,检验统计是完全一致的,综合零假设被完全拒绝。

在多变量Cox分析中,协变量性别和ph.ecog仍然显着(p <0.05)。然而,协变量年龄并不显着(P = 0.17,这比0.05)。

性别p值为0.000986,危险比HR = exp(coef)= 0.58,表明患者性别和死亡风险降低之间有很强的关系。协变量的风险比可以解释为对风险的倍增效应。例如,保持其他协变量不变,女性(性别= 2)将危害降低0.58倍,即42%。我们的结论是,女性与良好的预后相关。

类似地,ph.ecog的p值是4.45e-05,危险比HR = 1.59,表明ph.ecog值与死亡风险增加之间的强关系。保持其他协变量不变,ph.ecog值越高,生存率越差。

相比之下,年龄的p值现在是p = 0.23。风险比HR = exp(coef)= 1.01,95%置信区间为0.99至1.03。由于HR的置信区间为1,这些结果表明,年龄在调整了ph值和患者性别后对HR的差异的贡献较小,并且仅趋向显着性。例如,保持其他协变量不变,额外的年龄会导致每日死亡危险因素为exp(beta)= 1.01或1%,这不是一个重要的贡献。

可视化估计的生存时间分布

已经将Cox模型拟合到数据中,可以在特定风险组的任何给定时间点可视化预测的存活比例。函数survfit()估计生存比例,默认情况下为协变量的平均值。

绘制生存曲线:

kmfit<-survfit(Surv(time, status) ~ sex, data =  lung)
ggsurvplot(kmfit,
              pval = TRUE, conf.int = TRUE,
              risk.table = TRUE, 
              risk.table.col = "strata", 
              linetype = "strata", 
              surv.median.line = "hv", 
              ggtheme = theme_bw(), 
              palette = c("#E7B800", "#2E9FDF"))

以上就是关于“R语言如何实现Cox回归模型”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

推荐阅读:
  1. 学习日志---树回归(回归树,模型树)
  2. 使用tensorflow怎么实现逻辑回归模型

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

r语言 cox

上一篇:R语言怎么取整

下一篇:如何在Ubuntu 18.04/Linux Mint 19中安装Wine 4

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》