JavaScript网格中的最小路径怎么实现

发布时间:2022-06-21 14:02:02 作者:iii
来源:亿速云 阅读:131

这篇“JavaScript网格中的最小路径怎么实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“JavaScript网格中的最小路径怎么实现”文章吧。

问题描述

给你一个下标从 0 开始的整数矩阵 grid ,矩阵大小为 m x n ,由从 0 到 m * n - 1 的不同整数组成。你可以在此矩阵中,从一个单元格移动到 下一行 的任何其他单元格。如果你位于单元格 (x, y) ,且满足 x < m - 1 ,你可以移动到 (x + 1, 0), (x + 1, 1), ..., (x + 1, n - 1) 中的任何一个单元格。注意: 在最后一行中的单元格不能触发移动。

每次可能的移动都需要付出对应的代价,代价用一个下标从 0 开始的二维数组 moveCost 表示,该数组大小为 (m * n) x n ,其中 moveCost[i][j] 是从值为 i 的单元格移动到下一行第 j 列单元格的代价。从 grid 最后一行的单元格移动的代价可以忽略。

grid 一条路径的代价是:所有路径经过的单元格的 值之和 加上 所有移动的 代价之和 。从 第一行 任意单元格出发,返回到达 最后一行 任意单元格的最小路径代价。

示例 1:

JavaScript网格中的最小路径怎么实现

输入:grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]
输出:17
解释:最小代价的路径是 5 -> 0 -> 1 。
- 路径途经单元格值之和 5 + 0 + 1 = 6 。
- 从 5 移动到 0 的代价为 3 。
- 从 0 移动到 1 的代价为 8 。
路径总代价为 6 + 3 + 8 = 17 。

示例 2:

输入:grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]
输出:6
解释:
最小代价的路径是 2 -> 3 。 
- 路径途经单元格值之和 2 + 3 = 5 。 
- 从 2 移动到 3 的代价为 1 。 
路径总代价为 5 + 1 = 6 。

提示:

m == grid.length
n == grid[i].length
2 <= m, n <= 50
grid 由从 0 到 m * n - 1 的不同整数组成
moveCost.length == m * n
moveCost[i].length == n
1 <= moveCost[i][j] <= 100

思路分析

这道题目其实并不难,难的是对于题目的理解,题目有点长和绕,我们需要仔细阅读清楚题目给的信息,结合示例一的图片进行理解会更清晰。

1、题目会给出一个 m * n 的矩阵;

一个下标从 0 开始的整数矩阵 grid ,矩阵大小为 m x n ,由从 0 到 m * n - 1 的不同整数组成。

2、每一行的格子可以移动到下一行的任意一格;

在此矩阵中,从一个单元格移动到 下一行 的任何其他单元格。如果你位于单元格 (x, y) ,且满足 x < m - 1 ,你可以移动到 (x + 1, 0), (x + 1, 1), ..., (x + 1, n - 1) 中的任何一个单元格。

3、moveCost[i][j]表示从值为 i 的单元格移动到下一行第 j 列单元格的代价

每次可能的移动都需要付出对应的代价,代价用一个下标从 0 开始的二维数组 moveCost 表示,该数组大小为 (m * n) x n ,其中 moveCost[i][j] 是从值为 i 的单元格移动到下一行第 j 列单元格的代价。

4、求从 第一行 任意单元格出发,返回到达 最后一行 任意单元格的最小路径代价。

grid 一条路径的代价是:所有路径经过的单元格的 值之和 加上 所有移动的 代价之和 。从 第一行 任意单元格出发,返回到达 最后一行 任意单元格的最小路径代价。

理清楚上面的这四个信息之后,我们可以发现这是一道经典的dp动态规划的题目,我们每一个格子的上一步只能是上一行的某一格,我们只需要自顶向下求出移动到每一个格子的最下代价即可。

遍历矩阵的每一个格子,维护上一行到当前格子的最小代价,最后求出最后一行的格子的最小代价即可。

AC代码

/**
 * @param {number[][]} grid
 * @param {number[][]} moveCost
 * @return {number}
 */
 var minPathCost = function(grid, moveCost) {
    let dp = new Array(grid.length);
    let res = Infinity;
    for(let i = 0; i < dp.length; i++){
        dp[i] = new Array(grid[i].length).fill(0);
        for(let j = 0; j <  dp[i].length; j++){
            if(i === 0) dp[i][j] = grid[i][j];
            else{
                let temp = Infinity;
                for(let k = 0; k < dp[i].length; k++){
                    temp = Math.min(temp,dp[i - 1][k] + moveCost[grid[i - 1][k]][j]);
                }
                dp[i][j] = temp + grid[i][j];
            }
            if(i == grid.length - 1){
                res = Math.min(dp[i][j],res);
            }
        }
    }
    return res;
};

以上就是关于“JavaScript网格中的最小路径怎么实现”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

推荐阅读:
  1. bootstrap如何实现网格系统
  2. bootstrap中的网格系统

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

javascript

上一篇:MySQL创建表时的条件有哪些

下一篇:svn与cvs的区别有哪些

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》