Kotlin协程概念原理与使用实例分析

发布时间:2022-08-01 16:27:30 作者:iii
来源:亿速云 阅读:141

本篇内容介绍了“Kotlin协程概念原理与使用实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

一.协程概述

1.概念

协程是Coroutine的中文简称,co表示协同、协作,routine表示程序。协程可以理解为多个互相协作的程序。协程是轻量级的线程,它的轻量体现在启动和切换,协程的启动不需要申请额外的堆栈空间;协程的切换发生在用户态,而非内核态,避免了复杂的系统调用。

2.特点

1)更加轻量级,占用资源更少。

2)避免“回调地狱”,增加代码可读性。

3)协程的挂起不阻塞线程。

3.原理

Kotlin协程原理核心体现在“续体传递”与“状态机”两部分。

1)续体传递

续体传递是一种代码编写风格——续体传递风格(Continuation-Passing-Style),简称为CPS。续体传递本质上是代码的回调与结果的传递。假设将顺序执行代码分成两部分,第一部分执行完成,返回一个结果(可能为空、一个对象引用、一个具体的值)。接着通过回调执行第二部分代码,并传入第一部分代码返回的结果,这种形式的代码编写风格就是续体传递风格。

具体地,假设要计算一个复杂的计算,正常情况会这样编写,代码如下:

fun calculate(a: Int, b: Int): Int = a + b
fun main() {
    val result = calculate(1, 2)
    Log.d("liduo",result)
}

把上面的代码改造成续体传递风格。首先,定义一个续体传递接口,代码如下:

interface Continuation {
    fun next(result: Int)
}

对calculate方法进行改造,代码如下:

fun calculate(a: Int, b: Int, continuation: Continuation) = 
    continuation.next(a + b)
fun main() {
    calculate(1, 2) { result ->
        Log.d("liduo", result)
    }
}

经过续体传递改造后,打印日志的操作被封装到了Continuation中,并且依赖计算操作的回调。如果continuation方法不回调执行参数continuation,打印日志的操作将永远不会被执行。

原本顺序执行一段代码(逻辑),在经过一次续体改造后变成了两段代码(逻辑)。

2)状态机

协程的代码在经过Kotlin编译器处理时,会被优化成状态机模型。每段代码有三个状态:未执行、挂起、已恢复(完成)。处于未执行状态的代码可以被执行,执行过程中发生挂起,会进入挂起状态,从挂起中恢复或执行完毕会进入已恢复(完成)状态。当多个像这样的代码进行协作时,可以组合出更复杂的状态机。

二.协程基础

1.协程的上下文

协程上下文是一组可以附加到协程中的持久化用户定义对象,代码如下:

interface CoroutineContext {
    // 重载"[]"操作
    operator fun <E : Element> get(key: Key<E>): E?
    // 单值归一化操作
    fun <R> fold(initial: R, operation: (R, Element) -> R): R
    // 重载 "+"操作
    operator fun plus(context: CoroutineContext): CoroutineContext
    // 获取当前指定key外的其他上下文
    fun minusKey(key: Key<*>): CoroutineContext
    interface Element : CoroutineContext {
        val key: Key<*>
    }
    interface Key<E : Element>
}

Element接口继承自CoroutineContext接口,协程中的拦截器、调度器、异常处理器以及代表协程自身生命周期等重要的类,都实现了Element接口。

Element接口规定每个实现该接口的对象都要有一个独一无二的Key,以便在需要的时候可以在协程上下文中快速的找到。因此,协程上下文可以理解为是一个Element的索引集,一个结构介于Set和Map之间的索引集。

2.协程的作用域

协程作用域用于管理作用域内协程的生命周期,代码如下:

interface CoroutineScope {
    // 作用域内启动协程的默认上下文
    val coroutineContext: CoroutineContext
}

协程中提供了两个常用的方法来创建新的协程作用域,一个是coroutineScope方法,一个是supervisorScope方法,这两种方法创建的作用域中的上下文会自动继承父协程的上下文。除此之外,使用GlobalScope启动协程,也会为协程创建一个新的协程作用域,但协程作用域的上下文为空上下文。

当父协程被取消或发生异常时,会自动取消父协程所有的子协程。当子协程取消或发生异常时,在coroutineScope作用域下,会导致父协程取消;而在supervisorScope作用域下,则不会影响父协程。

协程的作用域只对父子协程有效,对子孙协程无效。例如:启动父协程,在supervisorScope作用域内启动子协程。当子协程在启动孙协程时,在不指定为supervisorScope作用域的情况下,默认为coroutineScope作用域。

3.协程调度器

协程调度器用于切换执行协程的线程。常见的调度器有以下4种:

注意:Dispatchers.Default调度器和Dispatchers.IO 调度器分配的线程为守护线程。

4.协程的启动模式

协程共有以下四种启动模式:

5.协程的生命周期

每个协程在创建后都会返回一个Job接口指向的对象,一个Job对象代表一个协程,用于控制生命周期,代码如下:

interface Job : CoroutineContext.Element {
    ...
    // 三个状态标志
    val isActive: Boolean
    val isCompleted: Boolean
    val isCancelled: Boolean
    // 获取具体的取消异常
    fun getCancellationException(): CancellationException
    // 启动协程
    fun start(): Boolean
    // 取消协程
    fun cancel(cause: CancellationException? = null)
    ...
    // 等待协程执行结束
    suspend fun join()
    // 用于select语句
    val onJoin: SelectClause0
    // 用于注册协程执行结束的回调
    fun invokeOnCompletion(handler: CompletionHandler): DisposableHandle
    ...
}

1)协程状态的转换

Kotlin协程概念原理与使用实例分析

在DEFAULT、ATOMIC、UNDISPATCHED这三个模式下,启动协程会进入Active状态,而在LAZY模式下启动的协程会进入New状态,需要在手动调用start方法后进入Active状态。

Completing是一个内部状态,对外不可感知。

2)状态标识的变化

State[isActive][isCompleted][isCancelled]
Newfalsefalsefalse
Activetruefalsefalse
Completingtruefalsefalse
Cancellingfalsefalsetrue
Cancelledfalsetruetrue
Completedfasletruefalse

三.协程使用

1.协程的启动

1)runBlocking方法

fun <T> runBlocking(context: CoroutineContext = EmptyCoroutineContext, block: suspend CoroutineScope.() -> T): T

该方法用于在非协程作用域环境中启动一个协程,并在这个协程中执行lambda表达式中的代码。同时,调用该方法会阻塞当前线程,直到lambda表达式执行完毕。该方法不应该在协程中被调用,该方法设计的目的是为了让suspend编写的代码可以在常规的阻塞代码中调用。如果不设置协程调度器,那么协程将在当前被阻塞的线程中执行。示例代码如下:

private fun main() {
    // 不指定调度器,在方法调用的线程执行
    runBlocking {
        // 这里是协程的作用域
        Log.d("liduo", "123")
    }
}
private fun main() {
    // 指定调度器,在IO线程中执行
    runBlocking(Dispatchers.IO) {
        // 这里是协程的作用域
        Log.d("liduo", "123")
    }
}

2)launch方法

fun CoroutineScope.launch(
    context: CoroutineContext = EmptyCoroutineContext,
    start: CoroutineStart = CoroutineStart.DEFAULT,
    block: suspend CoroutineScope.() -> Unit
): Job

该方法用于在协程作用域中异步启动一个新的协程,调用该方法不会阻塞线程。示例代码如下:

private fun test() {
    // 作用域为GlobalScope
    // 懒启动,主线程执行
    val job = GlobalScope.launch(
            context = Dispatchers.Main, 
            start = CoroutineStart.LAZY) {
        Log.d("liduo", "123")
    }
    // 启动协程
    job.start()
}

3)async方法

fun <T> CoroutineScope.async(
    context: CoroutineContext = EmptyCoroutineContext,
    start: CoroutineStart = CoroutineStart.DEFAULT,
    block: suspend CoroutineScope.() -> T
): Deferred<T>

该方法用于在协程作用域中中异步启动一个新的协程,调用该方法不会阻塞线程。async方法与launch方法的不同之处在于可以携带返回值。调用该方法会返回一个Deferred接口指向的对象,调用该对象可以获取协程执行的结果。同时,Deferred接口继承自Job接口,因此仍然可以操作协程的生命周期。示例代码如下:

// suspend标记
private suspend fun test(): Int {
    // 作用域为GlobalScope,返回值为Int类型,,泛型可省略,自动推断
    val deffer = GlobalScope.async<Int> {
        Log.d("liduo", "123")
        // 延时1s
        delay(1000)
        1
    }
    // 获取返回值
    return deffer.await()
}

通过调用返回的Deferred接口指向对象的await方法可以获取返回值。在调用await方法时,如果协程执行完毕,则直接获取返回值。如果协程还在执行,则该方法会导致协程挂起,直到执行结束或发生异常。

4)suspend关键字

suspend关键字用于修饰一个方法(lambda表达式)。suspend修饰的方法称为suspend方法,表示方法在执行中可能发生挂起。为什么是可能呢?比如下面的代码虽然被suspend修饰,但实际并不会发生挂起:

private suspend fun test() {
    Log.d("liduo", "123")
}

由于会发生挂起,因此suspend方法只能在协程中使用。suspend方法内部可以调用其他的suspend方法,也可以非suspend方法。但suspend方法只能被其他的suspend方法调用。

5)withContext方法

suspend fun <T> withContext(
    context: CoroutineContext,
    block: suspend CoroutineScope.() -> T
): T

该方法用于在当前协程的执行过程中,切换到调度器指定的线程去执行参数block中的代码,并返回一个结果。调用该方法可能会使当前协程挂起,并在方法执行结束时恢复挂起。示例代码如下:

private suspend fun test() {
    // IO线程启动并执行,启动模式DEFAULT
    GlobalScope.launch(Dispatchers.IO) {
        Log.d("liduo", "start")
        // 线程主切换并挂起,泛型可省略,自动推断
        val result = withContext<String>(Dispatchers.Main) {
            // 网络请求
            "json data"
        }
        // 切换回IO线程
        Log.d("liduo", result)
    }
}

6)suspend方法

inline fun <R> suspend(noinline block: suspend () -> R): suspend () -> R = block

该方法用于对挂起方法进行包裹,使挂起方法可以在非挂起方法中调用。该方法需要配合createCoroutine方法启动协程。示例代码如下:

// 返回包含当前的协程代码的续体
val continuation = suspend {
    // 执行协程代码
    // 泛型可以修改需要的类型
}.createCoroutine(object : Continuation<Any> {
    override val context: CoroutineContext
        get() = EmptyCoroutineContext + Dispatchers.Main

    override fun resumeWith(result: Result<Any>) {
        // 获取最终结果
    }
})
// 执行续体内容
continuation.resume(Unit)

一般开发中不会通过该方法启动协程,但该方法可以更本质的展示协程的启动、恢复、挂起。

2.协程间通信

1)Channel

Channel用于协程间的通信。Channel本质上是一个并发安全的队列,类似BlockingQueue。在使用时,通过调用同一个Channel对象的send和receive方法实现通信,示例代码如下:

suspend fun main() {
    // 创建
    val channel = Channel<Int>()
    val producer = GlobalScope.launch {
        var i = 0
        while (true){
            // 发送
            channel.send(i++)
            delay(1000)
            // channel不需要时要及时关闭
            if(i == 10)
                channel.close()
        }
    }
    // 写法1:常规
    val consumer = GlobalScope.launch {
        while(true){
            // 接收
            val element = channel.receive()
            Log.d("liduo", "$element")
        }
    }
    // 写法2:迭代器
    val consumer = GlobalScope.launch {
        val iterator = channel.iterator()
        while(iterator.hasNext()){
            // 接收
            val element = iterator.next()
            Log.d("liduo", "$element")
        }
    }
    // 写法3:增强for循环
    val consumer = GlobalScope.launch {
        for(element in channel){
            Log.d("liduo", "$element")
        }
    }
    // 上面的协程由于不是懒启动,因此创建完成直接就会start去执行
    // 也就是说,代码走到这里,上面的两个协程已经开始工作
    // join方法会挂起当前协程,而不是上面已经启动的两个协程
    // 在Android环境中,下面两行代码可以不用添加
    // producer.join()
    // consumer.join()
}

上述例子是一个经典的生产者-消费者模型。在写法1中,由于send方法和receive方法被suspend关键字修饰,因此,在默认情况下,当生产速度与消费速度不匹配时,调用这两个方法会导致协程挂起。

除此之外,Channel支持使用迭代器进行接收。其中,hasNext方法也可能会导致协程挂起。

Channel对象在不使用时要及时关闭,可以由发送者关闭,也可以由接收者关闭,具体取决于业务场景。

2)Channel的容量

Channel方法不是Channel的构造方法,而是一个工厂方法,代码如下:

fun <E> Channel(capacity: Int = RENDEZVOUS): Channel<E> =
    when (capacity) {
        RENDEZVOUS -> RendezvousChannel()
        UNLIMITED -> LinkedListChannel()
        CONFLATED -> ConflatedChannel()
        BUFFERED -> ArrayChannel(CHANNEL_DEFAULT_CAPACITY)
        else -> ArrayChannel(capacity)
    }

在创建Channel时可以指定容量:

3)produce方法与actor方法

fun <E> CoroutineScope.produce(
    context: CoroutineContext = EmptyCoroutineContext,
    capacity: Int = 0,
    @BuilderInference block: suspend ProducerScope<E>.() -> Unit
): ReceiveChannel<E>
fun <E> CoroutineScope.actor(
    context: CoroutineContext = EmptyCoroutineContext,
    capacity: Int = 0,
    start: CoroutineStart = CoroutineStart.DEFAULT,
    onCompletion: CompletionHandler? = null,
    block: suspend ActorScope<E>.() -> Unit
): SendChannel<E>

与launch方法和async方法相同,使用produce方法与actor方法也可以启动协程。但不同的是,在produce方法与actor方法中可以更简洁的使用Channel。示例代码如下:

// 启动协程,返回一个接收Channel
val receiveChannel: ReceiveChannel<Int> = GlobalScope.produce {
    while(true){
        delay(100)
        // 发送
        send(1)
    }
}
// 启动协程,返回一个发送Channel
val sendChannel: SendChannel<Int> = GlobalScope.actor<Int> {
    while(true){
        // 接收
        val element = receive()
        Log.d("liduo","$element")
    }
}

produce方法与actor方法内部对Channel对象做了处理,当协程执行完毕,自动关闭Channel对象。

但目前,produce方法还处于试验阶段(被ExperimentalCoroutinesApi注解修饰)。而actor方法也已经过时(被ObsoleteCoroutinesApi注解修饰)。因此在实际开发中最好不要使用!

4)BroadcastChannel

当遇到一个发送者对应多个接收者的场景时,可以使用BroadcastChannel。代码如下:

fun <E> BroadcastChannel(capacity: Int): BroadcastChannel<E> = 
    when (capacity) {
        0 -> throw IllegalArgumentException("Unsupported 0 capacity for BroadcastChannel")
        UNLIMITED -> throw IllegalArgumentException("Unsupported UNLIMITED capacity for BroadcastChannel")
        CONFLATED -> ConflatedBroadcastChannel()
        BUFFERED -> ArrayBroadcastChannel(CHANNEL_DEFAULT_CAPACITY)
        else -> ArrayBroadcastChannel(capacity)
    }

创建BroadcastChannel对象时,必须指定容量大小。接收者通过调用BroadcastChannel对象的openSubscription方法,获取ReceiveChannel对象来接收消息。示例代码如下:

// 创建BroadcastChannel,容量为5
val broadcastChannel = BroadcastChannel<Int>(5)
// 创建发送者协程
GlobalScope.launch {
    // 发送 1
    broadcastChannel.send(1)
    delay(100)
    // 发送 2
    broadcastChannel.send(2)
    // 关闭
    broadcastChannel.close()
}.join()
// 创建接收者1协程
GlobalScope.launch {
    // 获取ReceiveChannel
    val receiveChannel = broadcastChannel.openSubscription()
    // 接收
    for (element in receiveChannel) {
        Log.d("receiver_1: ", "$element")
    }
}.join()
// 创建接收者2协程
GlobalScope.launch {
    // 获取ReceiveChannel
    val receiveChannel = broadcastChannel.openSubscription()
    // 接收
    for (element in receiveChannel) {
        Log.d("receiver_2: ", "$element")
    }
}.join()

每个接收者都可以收到发送者发送的每一条消息。使用扩展方法broadcast可以直接将Channel对象转化为BroadcastChannel对象,示例代码如下:

val channel = Channel<Int>()
val broadcastChannel = channel.broadcast(10)

BroadcastChannel的很多方法也处于试验阶段(被ExperimentalCoroutinesApi注解修饰),使用时需慎重!

3.多路复用

协程中提供了类似Java中Nio的select方法,用于多路复用,代码如下:

suspend inline fun <R> select(crossinline builder: SelectBuilder<R>.() -> Unit): R

以Channel的多路复用为例,具体看一下select方法的使用。示例代码如下:

private suspend fun test() {
    // 创建一个Channel列表
    val channelList = mutableListOf<Channel<Int>>()
    // 假设其中有5个Channel
    channelList.add(Channel())
    channelList.add(Channel())
    channelList.add(Channel())
    channelList.add(Channel())
    channelList.add(Channel())
    // 调用select方法,协程挂起
    val result = select<Int> {
        // 对5个Channel进行注册监听,等待接收
        channelList.forEach {
            it.onReceive
        }
    }
    // 当5个Channel中任意一个接收到消息时,select挂起恢复
    // 并将返回值赋给result
    Log.d("liduo", "$result")
}

除此之外,协程中还有很多接口定义了名字为"onXXX"的方法,比如Job接口的onJoin方法,Deferred接口的onAwait方法,都是用于配合select方法来进行多路复用。

4.序列生成器

协程中提供了sequence方法来生成序列。示例代码如下:

private suspend fun test() {
    // 创建一个可以输出奇数的序列,泛型可省略,自动推断
    val singleNumber = sequence<Int> {
        val i = 0
        while (true) {
            // 在需要输出的地方调用yield方法
            yield(2 * i - 1)
        }
    }
    // 调用迭代器,获取序列的输出
    singleNumber.iterator().forEach {
        Log.d("liduo", "$it")
    }
    // 获取序列前五项,迭代输出
    singleNumber.take(5).forEach {
        Log.d("liduo", "$it")
    }
}

调用yield方法会使协程挂起,同时输出这个序列当前生成的值。除此之外,也可以调用yieldAll方法来输出序列产生值的合集,示例代码如下:

private suspend fun test() {
    // 创建一个可以输出奇数的序列,泛型可省略,自动推断
    val singleNumber = sequence<Int> {
        yieldAll(listOf(1,3,5,7))
        yieldAll(listOf(9,11,13))
        yieldAll(listOf(15,17))
    }
    // 调用迭代器,获取序列的输出,最多为9项
    singleNumber.iterator().forEach {
        Log.d("liduo", "$it")
    }
    // 获取序列前五项,迭代输出
    singleNumber.take(5).forEach {
        // 1,3,5,7,9
        Log.d("liduo", "$it")
    }    
}

5.协程异步流

协程中提供了类似RxJava的响应式编程API&mdash;&mdash;Flow(官方称为异步冷数据流,官方也提供了创建热数据流的方法)。

1)基础使用

// 在主线程上调用
GlobalScope.launch(Dispatchers.Main) {
    // 创建流
    flow<Int> {
        // 挂起,输出返回值
        emit(1)
      // 设置流执行的线程,并消费流
    }.flowOn(Dispatchers.IO).collect {
            Log.d("liduo", "$it")
        }
}.join()

emit方法是一个挂起方法,类似sequence中的yield方法,用于输出返回值。flowOn方法等同于Rxjava中的subscribeOn方法,用于切换flow执行的线程。为了避免理解混淆,Flow中没有提供类似Rxjava中的observeOn方法,但可以通过指定流所在协程的上下文参数确定。collect方法等同于RxJava中的subscribe方法,用于触发和消费流。

一个流可以被多次消费,示例代码如下:

GlobalScope.launch(Dispatchers.IO) {
    val mFlow = flow<Int> {
        emit(1)
    }.flowOn(Dispatchers.Main)
    mFlow.collect { Log.d("liduo1", "$it") }
    mFlow.collect { Log.d("liduo2", "$it") }
}.join()

2)异常处理

Flow支持类似try-catch-finally的异常处理。示例代码如下:

flow<Int> {
    emit(1)
    // 抛出异常
    throw NullPointerException()
}.catch { cause: Throwable ->
    Log.d("liduo", "${cause.message}")
}.onCompletion { cause: Throwable? ->
    Log.d("liduo", "${cause?.message}")
}

catch方法用于捕获异常。onCompletion方法等同于finally代码块。Kotlin不建议直接在flow中通过try-catch-finally代码块去捕获异常!

Flow中还提供了类似RxJava的onErrorReturn方法的操作,示例代码如下:

flow<Int> {
    emit(1)
    // 抛出异常
    throw NullPointerException()
}.catch { cause: Throwable ->
    Log.d("liduo", "${cause.message}")
    emit(-1)
}

3)触发分离

Flow支持提前写好流的消费,在必要的时候再去触发消费的操作。示例代码如下:

// 创建Flow的方法
fun myFlow() = flow<Int> {
    // 生产过程
    emit(1)
}.onEach {
    // 消费过程
    Log.d("liduo", "$it")
}
suspend fun main() {
    // 写法1
    GlobalScope.launch {
        // 触发消费
        myFlow().collect()
    }.join()
    // 写法2
    myFlow().launchIn(GlobalScope).join()
}

4)注意

6.全局上下文

在本文中,启动协程使用的都是GlobalScope,但在实际开发过程中,不应该使用GlobalScope。GlobalScope会开启一个全新的协程作用域,并且不受我们控制。假设Activity页面关闭时,其中的协程还没有运行结束,并且我们还无法取消协程的执行,这时可能会导致内存泄漏。因此,在实际开发中,可以自定义一个全局的协程作用域,或者至少按照以下方法书写代码:

// 实现CoroutineScope接口
class MainActivity : AppCompatActivity(),CoroutineScope by MainScope() {
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_main)
        // 直接启动协程
        launch {
            Log.d("liduo", "launch")
        }
    }
    override fun onDestroy() {
        super.onDestroy()
        // 取消顶级父协程
        cancel()
    }
}

MainScope的代码如下:

public fun MainScope(): CoroutineScope = ContextScope(SupervisorJob() + Dispatchers.Main)

Dispatchers.Main表示在主线程调度,SupervisorJob()表示子协程取消不会影响父协程。

“Kotlin协程概念原理与使用实例分析”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

推荐阅读:
  1. 浅析python协程相关概念
  2. 使用kotlin协程提高app性能(译)

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

kotlin

上一篇:怎么使用opencv实现图像平移

下一篇:Redis删除策略的三种方法及逐出算法实例分析

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》