C++数据结构之红黑树如何实现

发布时间:2022-08-08 14:13:13 作者:iii
来源:亿速云 阅读:119

这篇文章主要介绍“C++数据结构之红黑树如何实现”,在日常操作中,相信很多人在C++数据结构之红黑树如何实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++数据结构之红黑树如何实现”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

一、什么是红黑树

红黑树在表意上就是一棵每个节点带有颜色的二叉搜索树,并通过对节点颜色的控制,使该二叉搜索树达到尽量平衡的状态。所谓尽量平衡的状态就是:红黑树确保没有一条路径比其他路径长两倍。

和AVL树不同的是,AVL树是一棵平衡树,而红黑树可能平衡也可能不平衡(因为是尽量平衡的状态)

二、红黑树的约定

要实现一棵红黑树,即要红黑树确保没有一条路径比其他路径长两倍。通过对节点颜色的约定来实现这一目标。

1.根节点是黑色的。

2.如果一个节点是红色的,则它的两个孩子都是黑色的。

3.对于每个节点,从该节点到其所有后代节点的简单路径上,均包含相同数量的黑色节点。

实现了这三条颜色规则的二叉搜索树,即也实现了没有一条路径比其他路径长两倍,即实现了一棵红黑树。

三、红黑树vsAVL

1、调整平衡的实现机制不同

红黑树根据节点颜色(同一父节点出发到叶子节点,所有路径上的黑色节点数目一样),一些约定和旋转实现。

AVL根据树的平衡因子(所有节点的左右子树高度差的绝对值不超过1)和旋转决定。

2、红黑树的插入效率更高

红黑树是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决,红黑树并不追求“完全平衡”,它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能

而AVL是严格平衡树(高度平衡的二叉搜索树),因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多。所以红黑树的插入效率更高

3、AVL查找效率高

如果你的应用中,查询的次数远远大于插入和删除,那么选择AVL树,如果查询和插入删除次数几乎差不多,应选择红黑树。即,有时仅为了排序(建立-遍历-删除),不查找或查找次数很少,R-B树合算一些。

四、红黑树的实现

实现一棵红黑树,本质是实现它的插入函数,使插入函数可以实现红黑树的颜色约定,它的实现分为两步,即先找到插入的位置,再控制平衡。插入函数返回值设计为bool,插入成功返回true,失败返回false。控制平衡时,需要关注四个节点,即新插入的节点,它的父节点,它的叔叔节点,它的祖父节点。

1.找到插入的位置

当为第一个节点的时候,颜色设为黑,直接插入。

当插入的不是第一个节点时,颜色设为红,需要根据二叉搜索树的性质找到插入位置。并实现三叉链。

        if (_root == nullptr)
        {
            _root = new Node(kv);
            _root->_col = Black;
            return true;
        }
        Node* parent = nullptr;
        Node* cur = _root;
        while (cur)
        {
            if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }
        cur = new Node(kv);
        cur->_col= Red;
        if (parent->_kv.first < kv.first)
        {
            parent->_right = cur;
            cur->_parent = parent;
        }
        else
        {
            parent->_left = cur;
            cur->_parent = parent;
        }

2.控制平衡

(1)当父节点为黑

当父节点为黑的时候,由于插入的子节点的颜色为红,对三个约定没有任何影响,因此不需要调整平衡。

(2)判断父节点在祖父节点的位置

通过判断父节点在祖父节点的位置,来定义叔叔节点的位置,以及之后的旋转方向的判断。

while (parent && parent->_col == Red)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
   Node* uncle = grandfather->_right;
   //三种情况的处理
}
else
{
   Node* uncle = grandfather->_left;
   //三种情况的处理
}

首先需要使用大循环,这个循环是为情况1而准备的,情况2和3直接跳出循环即可,因为只有情况1对上层循环有影响。
下面我们以父节点在祖父节点的左侧为例,右侧同理。

(3)叔叔节点存在且为红

解决方案:将父节点和叔叔节点设为黑,将祖父节点设为红。然后将祖父节点作为新节点继续向上平衡。如果祖父节点是根节点,那么需要再将其置为黑。

C++数据结构之红黑树如何实现

注意,这种情况和其他情况不同的是,需要将祖父节点作为新插入的节点继续向上遍历,这说明需要一个循环。而其他类型的情况直接break跳出这个循环即可。

//第一种情况
if (uncle && uncle->_col == Red)
{
    parent->_col = uncle->_col = Black;
    grandfather->_col = Red;
    cur = grandfather;
    parent = cur->_parent;
}

这种情况只需要控制颜色即可,但是要继续向上循环。

(4)父节点为红,叔叔不存在或存在且为黑,新插入的节点在父节点左侧

解决方案:对祖父节点右旋操作,并将祖父节点置为红,父节点置为黑。

C++数据结构之红黑树如何实现

关于旋转的细节,我在AVL树中有详细的解释:C++手撕AVL树

//第二种情况,右单旋
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = Black;
grandfather->_col = Red;
}

(5)父节点为红,叔叔不存在或存在且为黑,新插入的节点在父节点右侧

解决方案:进行双旋,即对父节点进行左单旋,祖父节点进行右单旋。将子节点置为黑,将祖父节点置为红。

C++数据结构之红黑树如何实现

else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = Black;
grandfather->_col = Red;
}

(6)最后置黑

每一次插入都对根节点置为黑操作,因为第一种情况可能导致根节点不是黑。同时对根节点置黑也并不违反三条规定。

3.测试代码

当我们处理完父节点在祖父节点的左侧后,处理父节点在祖父节点的右侧。

全部处理之后,我们的插入代码就完成了,接下来要对整个树进行测试,即对三个约定来进行测试:

1.当根节点为红时,返回false。

2.判断一个节点和其父节点的颜色是否都为红,若都为红返回false。

3.以最左的一条路径上的根节点数量为基准,通过递归遍历每一条路径上的根节点的数量,当每条路径遍历节点到空时,将两者进行比较,如果最终结果不相等则返回false。

    bool IsBalance()
    {
        if (_root && _root->_col == Red)
        {
            cout << "根节点不是黑色的" << endl;
            return false;
        }
        int banchmark = 0;
        //以最右边一条路径为基准
        Node* left = _root;
        while (left)
        {
            if (left->_col == Black)
            {
                ++banchmark;
            }
            left = left->_left;
        }
        int blackNum = 0;
        return _IsBalance(_root, banchmark, blackNum);
    }
    bool _IsBalance(Node* root, int banchmark, int blackNum)
    {
        if (root == nullptr)
        {
            if (banchmark != blackNum)
            {
                cout << "黑色根节点数目不相等" << endl;
                return false;
            }
            return true;
        }
        if (root->_col == Red && root->_parent->_col == Red)
        {
            cout << "出现连续的红色节点" << endl;
            return false;
        }
        if (root->_col == Black)
        {
            ++blackNum;
        }
        return _IsBalance(root->_left, banchmark, blackNum) && _IsBalance(root->_right, banchmark, blackNum);
    }

五、完整代码

1.test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"RBtree.h"
#include<vector>
int main()
{
    RBTree<int, int> t;
    vector<int> v;
    srand(time(0));
    int N = 100000;
    int count = 0;
    for (int i = 0; i < N; i++)
    {
        v.push_back(rand());
    }
    for (auto e : v)
    {
        pair<int,int> kv(e, e);
        t.insert(kv);
        if (t.IsBalance())
        {
            cout << "insert" << e << endl;
            count++;
            cout << count << endl;
        }
        else
        {
            cout << e << "插入失败" << endl;
            cout << "不是平衡的" << endl;
            break;
        }
    }
}

2.RBTree.h

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;
enum Color
{
    Red,
    Black
};
template<class K,class V>
struct RBTreeNode
{
    RBTreeNode<K, V>* _left;
    RBTreeNode<K, V>* _right;
    RBTreeNode<K, V>* _parent;
    pair<K, V> _kv;
    Color _col;
    RBTreeNode(pair<K, V>& kv)
        :_left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _col(Red)
        , _kv(kv)
    {}
};
template<class K,class V>
struct RBTree
{
    typedef RBTreeNode<K, V> Node;
private:
    Node* _root;
public:
    RBTree()
        :_root(nullptr)
    {}
    bool IsBalance()
    {
        if (_root && _root->_col == Red)
        {
            cout << "根节点不是黑色的" << endl;
            return false;
        }
        int banchmark = 0;
        //以最右边一条路径为基准
        Node* left = _root;
        while (left)
        {
            if (left->_col == Black)
            {
                ++banchmark;
            }
            left = left->_left;
        }
        int blackNum = 0;
        return _IsBalance(_root, banchmark, blackNum);
    }
    bool _IsBalance(Node* root, int banchmark, int blackNum)
    {
        if (root == nullptr)
        {
            if (banchmark != blackNum)
            {
                cout << "黑色根节点数目不相等" << endl;
                return false;
            }
            return true;
        }
        if (root->_col == Red && root->_parent->_col == Red)
        {
            cout << "出现连续的红色节点" << endl;
            return false;
        }
        if (root->_col == Black)
        {
            ++blackNum;
        }
        return _IsBalance(root->_left, banchmark, blackNum) && _IsBalance(root->_right, banchmark, blackNum);
    }
    //右单旋
    void RotateR(Node* parent)
    {
        Node* cur = parent->_left;
        Node* curL = cur->_left;
        Node* curR = cur->_right;
        Node* parentParent = parent->_parent;
        parent->_left = curR;
        if (curR)
            curR->_parent = parent;
        cur->_right = parent;
        parent->_parent = cur;
        if (parent == _root)
        {
            _root = cur;
            _root->_parent = nullptr;
        }
        else
        {
            if (parentParent->_left == parent)
            {
                parentParent->_left = cur;
                cur->_parent = parentParent;
            }
            else if (parentParent->_right == parent)
            {
                parentParent->_right = cur;
                cur->_parent = parentParent;
            }
            else
            {
                assert(false);
            }
        }
    }
    //左单旋
    void RotateL(Node* parent)
    {
        Node* cur = parent->_right;
        Node* curL = cur->_left;
        Node* parentParent = parent->_parent;
        parent->_right = curL;
        if (curL)
            curL->_parent = parent;
        cur->_left = parent;
        parent->_parent = cur;
        if (parent == _root)
        {
            _root = cur;
            _root->_parent = nullptr;
        }
        else
        {
            if (parentParent->_left == parent)
            {
                parentParent->_left = cur;
                cur->_parent = parentParent;
            }
            else if (parentParent->_right == parent)
            {
                parentParent->_right = cur;
                cur->_parent = parentParent;
            }
            else
            {
                assert(false);
            }
        }
    }
    bool insert(pair<K, V>& kv)
    {
        if (_root == nullptr)
        {
            _root = new Node(kv);
            _root->_col = Black;
            return true;
        }
        Node* parent = nullptr;
        Node* cur = _root;
        while (cur)
        {
            if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }
        cur = new Node(kv);
        cur->_col= Red;
        if (parent->_kv.first < kv.first)
        {
            parent->_right = cur;
            cur->_parent = parent;
        }
        else
        {
            parent->_left = cur;
            cur->_parent = parent;
        }
        while (parent && parent->_col == Red)
        {
            Node* grandfather = parent->_parent;
            if (parent == grandfather->_left)
            {
                Node* uncle = grandfather->_right;
                //第一种情况
                if (uncle && uncle->_col == Red)
                {
                    parent->_col = uncle->_col = Black;
                    grandfather->_col = Red;
                    cur = grandfather;
                    parent = cur->_parent;
                }
                else
                {
                    //第二种情况,右单旋
                    if (cur == parent->_left)
                    {
                        RotateR(grandfather);
                        parent->_col = Black;
                        grandfather->_col = Red;
                    }
                    //第三种情况,左右双旋
                    else
                    {
                        RotateL(parent);
                        RotateR(grandfather);
                        cur->_col = Black;
                        grandfather->_col = Red;
                    }
                    break;
                }
                _root->_col = Black;
            }
            else
            {
                Node* uncle = grandfather->_left;
                //第一种情况
                if (uncle && uncle->_col == Red)
                {
                    parent->_col = uncle->_col = Black;
                    grandfather->_col = Red;
                    cur = grandfather;
                    parent = cur->_parent;
                }
                else
                {
                    //第二种情况,左单旋
                    if (cur == parent->_right)
                    {
                        RotateL(grandfather);
                        parent->_col = Black;
                        grandfather->_col = Red;
                    }
                    //第三种情况,右左双旋
                    else
                    {
                        RotateR(parent);
                        RotateL(grandfather);
                        cur->_col = Black;
                        grandfather->_col = Red;
                    }
                    break;
                }
                _root->_col = Black;
            }
        }
    }
};

到此,关于“C++数据结构之红黑树如何实现”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

推荐阅读:
  1. 红黑树之插入
  2. map实现之红黑树

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++

上一篇:Linux Shell自动交互功能如何实现

下一篇:怎么使用await-to-js源码处理异步任务

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》