最小生成树---Priml算法

发布时间:2020-05-27 09:19:01 作者:汇天下豪杰
来源:网络 阅读:575

1 、Prim算法思想

  思想:首先找到权值最小的一条边,由这两个顶点出发,分别去找权值最小的(不能有环的出现);由各个顶点,每次都找权值最小的。

  连贯的做法:从顶点的连续角度出发,每次从相应顶点出发,到权值最小的边进行连接。

模型如下:

最小生成树---Priml算法


最小生成树---Priml算法


最小生成树---Priml算法

2、Prim算法实现

  lowCost[i]:表示以i为终点的边的最小权值,当lowCost[i] = 0;说明以i为终点的边的最小权值=0;也就是表示i点加入了mst数组;

  mst[i]:表示对应lowCost[i]的起点,即说明边<mst[i], i>是mst的一条边;

  每次进行一次比较,都要随之更改其lowCost和mst数组;

  每并入一个顶点,都更改为0,并且修改相应的记录;都会从内部挑选最小的权值,直到最后所有的lowCost[i] = 0;

    均由C++实现(邻接矩阵实现):

template<typename Type, typename E>
void GraphMtx<Type, E>::MinSpanTree_Prim(const Type &v){
    int n = Graph<Type, E>::getCurVertex();
    int *lowCost = new int[n];  //这两个数组是至关重要的 
    int *mst = new int[n];

    int k = getVertexIndex(v);
    for(int i = 0; i < n; i++){
        if(i != k){
            lowCost[i] = edge[k][i];  //i:表示最终顶点,lowCost[i]:表示起始到最终顶点的权值;
            mst[i] = k;  //起始顶点
        }else{
            lowCost[i] = 0;
        }
    }

    int min;
    int minIndex;
    int begin;
    int end;

    for(i = 0; i < n-1; i++){
        min = MAX_COST;
        minIndex = -1;

        for(int j = 0; j < n; j++){
            if(lowCost[j] != 0 && lowCost[j] < min){
                min = lowCost[j];  //最小权值
                minIndex = j;  //终点
            }
        }
        begin = mst[minIndex];  //起点
        end = minIndex;  //终点
        printf("%c-->%c : %d\n", getValue(begin), getValue(end), min);

        lowCost[minIndex] = 0; //赋为0并入mst集合

        int cost;
        for(j = 0; j < n; j++){  //每次都重新更改lowCost和mst数组;
            cost = edge[minIndex][j];
            if(cost < lowCost[j]){
                lowCost[j] = cost;
                mst[j] = minIndex;
            }
        }
        
    }
}

3、完整代码、测试代码、测试结果

  (1)、完整代码

#ifndef _GRAPH_H_
#define _GRAPH_H_

#include<iostream>
#include<queue>
using namespace std;

#define VERTEX_DEFAULT_SIZE        10
#define MAX_COST                0x7FFFFFFF

template<typename Type, typename E>    
class Graph{
public:
    bool isEmpty()const{
        return curVertices == 0;
    }
    bool isFull()const{
        if(curVertices >= maxVertices || curEdges >= curVertices*(curVertices-1)/2)
            return true;  //图满有2种情况:(1)、当前顶点数超过了最大顶点数,存放顶点的空间已满
        return false;     //(2)、当前顶点数并没有满,但是当前顶点所能达到的边数已满
    }
    int getCurVertex()const{
        return curVertices;
    }
    int getCurEdge()const{
        return curEdges;
    }
public:
    virtual bool insertVertex(const Type &v) = 0;  //插入顶点
    virtual bool insertEdge(const Type &v1, const Type &v2, E cost) = 0; //插入边
    virtual bool removeVertex(const Type &v) = 0;  //删除顶点
    virtual bool removeEdge(const Type &v1, const Type &v2) = 0; //删除边
    virtual int getFirstNeighbor(const Type &v) = 0; //得到第一个相邻顶点
    virtual int getNextNeighbor(const Type &v, const Type &w) = 0; //得到下一个相邻顶点
public:
    virtual int getVertexIndex(const Type &v)const = 0; //得到顶点下标
    virtual void showGraph()const = 0;  //显示图
    virtual Type getValue(int index)const = 0; 
public:
    virtual void DFS(const Type &v) = 0;
    virtual void BFS(const Type &v) = 0;
protected:
    int maxVertices;  //最大顶点数
    int curVertices;  //当前顶点数
    int curEdges;  //当前边数
};

template<typename Type, typename E>
class GraphMtx : public Graph<Type, E>{ //邻接矩阵继承父类矩阵
#define maxVertices  Graph<Type, E>::maxVertices  //因为是模板,所以用父类的数据或方法都得加上作用域限定符
#define curVertices  Graph<Type, E>::curVertices
#define curEdges     Graph<Type, E>::curEdges
public:
    GraphMtx(int vertexSize = VERTEX_DEFAULT_SIZE){  //初始化邻接矩阵
        maxVertices = vertexSize > VERTEX_DEFAULT_SIZE ? vertexSize : VERTEX_DEFAULT_SIZE;
        vertexList = new Type[maxVertices]; //申请顶点空间
        for(int i = 0; i < maxVertices; i++){  //都初始化为0
            vertexList[i] = 0;
        }
        edge = new int*[maxVertices];  //申请边的行
        for(i = 0; i < maxVertices; i++){ //申请列空间
            edge[i] = new int[maxVertices];
        }
        for(i = 0; i < maxVertices; i++){ //赋初值为0 
            for(int j = 0; j < maxVertices; j++){
                if(i != j){
                    edge[i][j] = MAX_COST; //初始化时都赋为到其它边要花的代价为无穷大。
                }else{
                    edge[i][j] = 0;  //初始化时自己到自己认为花费为0
                }
            }
        }
        curVertices = curEdges = 0; //当前顶点和当前边数
    }
    GraphMtx(Type (*mt)[4], int sz){  //通过已有矩阵的初始化
        int e = 0; //统计边数
        maxVertices = sz > VERTEX_DEFAULT_SIZE ? sz : VERTEX_DEFAULT_SIZE;
        vertexList = new Type[maxVertices]; //申请顶点空间
        for(int i = 0; i < maxVertices; i++){  //都初始化为0
            vertexList[i] = 0;
        }
        edge = new int*[maxVertices];  //申请边的行
        for(i = 0; i < maxVertices; i++){ //申请列空间
            edge[i] = new Type[maxVertices];
        }
        for(i = 0; i < maxVertices; i++){ //赋初值为矩阵当中的值
            for(int j = 0; j < maxVertices; j++){
                edge[i][j] = mt[i][j];
                if(edge[i][j] != 0){
                    e++; //统计列的边数
                }
            }
        }
        curVertices = sz;
        curEdges = e/2;
    }
    ~GraphMtx(){}
public:
    bool insertVertex(const Type &v){
        if(curVertices >= maxVertices){
            return false;
        }
        vertexList[curVertices++] = v;
        return true;
    }
    bool insertEdge(const Type &v1, const Type &v2, E cost){
        int maxEdges = curVertices*(curVertices-1)/2;
        if(curEdges >= maxEdges){
            return false;
        }

        int v = getVertexIndex(v1);
        int w = getVertexIndex(v2);

        if(v==-1 || w==-1){
            cout<<"edge no exit"<<endl; //要插入的顶点不存在,无法插入
            return false;
        }
        if(edge[v][w] != MAX_COST){  //当前边已经存在,不能进行插入
            return false;
        }

        edge[v][w] = edge[w][v] = cost; //因为是无向图,对称, 权值赋为cost;
        return true; 
    }  //删除顶点的高效方法
    bool removeVertex(const Type &v){
        int i = getVertexIndex(v);
        if(i == -1){
            return false;
        }
        vertexList[i] = vertexList[curVertices-1];
        int edgeCount = 0;
        for(int k = 0; k < curVertices; k++){
            if(edge[i][k] != 0){  //统计删除那行的边数
                edgeCount++;
            }
        }
        //删除行
        for(int j = 0; j < curVertices; j++){
            edge[i][j] = edge[curVertices-1][j];
        }
        //删除列
        for(j = 0; j < curVertices; j++){
            edge[j][i] = edge[j][curVertices-1];
        }
        curVertices--;
        curEdges -= edgeCount;
        return true;
    }
/*  //删除顶点用的是数组一个一个移动的方法,效率太低。
    bool removeVertex(const Type &v){
        int i = getVertexIndex(v);
        if(i == -1){
            return false;
        }
        for(int k = i; k < curVertices-1; ++k){
            vertexList[k] = vertexList[k+1];
        }

        int edgeCount = 0;
        for(int j = 0; j < curVertices; ++j){
            if(edge[i][j] != 0)
                edgeCount++;
        }

        for(int k = i; k < curVertices-1; ++k)
        {
            for(int j = 0; j < curVertices; ++j)
            {
                edge[k][j] = edge[k+1][j];
            }
        }

        for(int k = i; k < curVertices-1; ++k)
        {
            for(int j = 0; j < curVertices; ++j)
            {
                edge[j][k] = edge[j][k+1];
            }
        }

        curVertices--;
        curEdges -= edgeCount;

        return true;
    }        
*/
    bool removeEdge(const Type &v1, const Type &v2){
        int v = getVertexIndex(v1);
        int w = getVertexIndex(v2);

        if(v==-1 || w==-1){  //判断要删除的边是否在当前顶点内
            return false;  //顶点不存在
        }
        if(edge[v][w] == 0){ //这个边根本不存在,没有必要删
            return false;
        }
        edge[v][w] = edge[w][v] = 0; //删除这个边赋值为0,代表不存在;
        curEdges--;

        return true;
    }
    int getFirstNeighbor(const Type &v){
        int i = getVertexIndex(v);
        if(i == -1){
            return -1;
        }
        for(int col = 0; col < curVertices; col++){
            if(edge[i][col] != 0){
                return col;
            }
        }
        return -1;
    }
    int getNextNeighbor(const Type &v, const Type &w){
        int i = getVertexIndex(v);
        int j = getVertexIndex(w);

        if(i==-1 || j==-1){
            return -1;
        }
        for(int col = j+1; col < curVertices; col++){
            if(edge[i][col] != 0){
                return col;
            }
        }

        return -1;
    }
public:
    void showGraph()const{
        if(curVertices == 0){
            cout<<"Nul Graph"<<endl;
            return;
        }

        for(int i = 0; i < curVertices; i++){
            cout<<vertexList[i]<<"  "; 
        }
        cout<<endl;
        for(i = 0; i < curVertices; i++){
            for(int j = 0; j < curVertices; j++){
                if(edge[i][j] != MAX_COST){
                    cout<<edge[i][j]<<"  ";
                }else{
                    cout<<"@  ";
                }
            }
            cout<<vertexList[i]<<endl;
        }
    }
    int getVertexIndex(const Type &v)const{
        for(int i = 0; i < curVertices; i++){
            if(vertexList[i] == v){
                return i;
            }
        }

        return -1;
    }
public:
    Type getValue(int index)const{
        return vertexList[index];
    }
    void DFS(const Type &v){
        int n = Graph<Type, E>::getCurVertex();
        bool *visit = new bool[n];

        for(int i = 0; i < n; i++){
            visit[i] = false;
        }
        DFS(v, visit);
        delete []visit;
    }
    void BFS(const Type &v){
        int n = Graph<Type, E>::getCurVertex();
        bool *visit = new bool[n];
        for(int i = 0; i < n; i++){
            visit[i] = false;
        }
        cout<<v<<"-->";
        int index = getVertexIndex(v);
        visit[index] = true;

        queue<int> q;  //队列中存放的是顶点下标;
        q.push(index);
        int w;
        while(!q.empty()){
            index = q.front();
            q.pop();
            w = getFirstNeighbor(getValue(index));
            while(w != -1){
                if(!visit[w]){
                    cout<<getValue(w)<<"-->";
                    visit[w] = true; 
                    q.push(w);
                }
                
                w = getNextNeighbor(getValue(index), getValue(w));
                
            }
        }

        delete []visit;
    }
public:
    void MinSpanTree_Kruskal();
    void MinSpanTree_Prim(const Type &v);
protected:
    void DFS(const Type &v, bool *visit){
        cout<<v<<"-->";
        int index = getVertexIndex(v);
        visit[index] = true;
        int w = getFirstNeighbor(v);
        while(w != -1){
            if(!visit[w]){
                DFS(getValue(w), visit);
            }
            w = getNextNeighbor(v, getValue(w)); 
        }
    }
private:
    Type *vertexList;  //存放顶点的数组
    int **edge;  //存放边关系的矩阵
};
//////////////////////////////////////////////////////////////////////////////////////////////////////
typedef struct MstEdge{
    int x;  //row
    int y;  //col
    int cost;
}MstEdge;

int cmp(const void *a, const void *b){
    return (*(MstEdge*)a).cost - (*(MstEdge*)b).cost;
}

bool isSame(int *father, int i, int j){
    while(father[i] != i){
        i = father[i];
    }
    while(father[j] != j){
        j = father[j];
    }

    return i == j;
}
void markSame(int *father, int i, int j){
    while(father[i] != i){
        i = father[i];
    }
    while(father[j] != j){
        j = father[j];
    }

    father[j] = i;
}

template<typename Type, typename E>
void GraphMtx<Type, E>::MinSpanTree_Kruskal(){ 
    int n = Graph<Type, E>::getCurVertex();  //由于要用到父类的保护数据或方法,有模板的存在,必须加上作用域限定符;
    MstEdge *edge1 = new MstEdge[n*(n-1)/2];
    int k = 0;

    for(int i = 0; i < n; i++){
        for(int j = i+1; j < n; j++){
            if(edge[i][j] != MAX_COST){
                edge1[k].x = i;
                edge1[k].y = j;
                edge1[k].cost = edge[i][j];
                k++;
            }
        }
    }
    qsort(edge1, k, sizeof(MstEdge), cmp);

    int *father = new int[n];
    Type v1, v2;
    for(i = 0; i < n; i++){
        father[i] = i;
    }
    for(i = 0; i < n; i++){
        if(!isSame(father, edge1[i].x, edge1[i].y)){
            v1 = getValue(edge1[i].x);
            v2 = getValue(edge1[i].y);
            printf("%c-->%c : %d\n", v1, v2, edge1[i].cost);
            markSame(father, edge1[i].x, edge1[i].y);
        }
    }
}
template<typename Type, typename E>
void GraphMtx<Type, E>::MinSpanTree_Prim(const Type &v){
    int n = Graph<Type, E>::getCurVertex();
    int *lowCost = new int[n];
    int *mst = new int[n];

    int k = getVertexIndex(v);
    for(int i = 0; i < n; i++){
        if(i != k){
            lowCost[i] = edge[k][i];
            mst[i] = k;
        }else{
            lowCost[i] = 0;
        }
    }

    int min;
    int minIndex;
    int begin;
    int end;

    for(i = 0; i < n-1; i++){
        min = MAX_COST;
        minIndex = -1;

        for(int j = 0; j < n; j++){
            if(lowCost[j] != 0 && lowCost[j] < min){
                min = lowCost[j];
                minIndex = j;
            }
        }
        begin = mst[minIndex];
        end = minIndex;
        printf("%c-->%c : %d\n", getValue(begin), getValue(end), min);

        lowCost[minIndex] = 0;

        int cost;
        for(j = 0; j < n; j++){
            cost = edge[minIndex][j];
            if(cost < lowCost[j]){
                lowCost[j] = cost;
                mst[j] = minIndex;
            }
        }
        
    }
}

#endif

  (2)、测试代码

#include"Graph2.h"

int main(void){
    GraphMtx<char,int> gm;
    gm.insertVertex('A'); //0
    gm.insertVertex('B'); //1
    gm.insertVertex('C'); //2
    gm.insertVertex('D'); //3
    gm.insertVertex('E'); //4
    gm.insertVertex('F'); //5

    gm.insertEdge('A','B',6);
    gm.insertEdge('A','C',1);
    gm.insertEdge('A','D',5);
    gm.insertEdge('B','C',5);
    gm.insertEdge('B','E',3);
    gm.insertEdge('C','E',6);
    gm.insertEdge('C','D',5);
    gm.insertEdge('C','F',4);
    gm.insertEdge('D','F',2);
    gm.insertEdge('E','F',6);

    gm.showGraph();
    gm.MinSpanTree_Kruskal();
    cout<<"---------------------------------------------------------"<<endl;
    gm.MinSpanTree_Prim('A');

    return 0;
 
}

  (3)、测试结果

测试图模型:

最小生成树---Priml算法


最小生成树---Priml算法




推荐阅读:
  1. 最小生成树---Kruskal算法
  2. [算法]列车算法

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

--

上一篇:Kubernetes的HPA自动扩容与缩容是什么?

下一篇:AI人脸识别SDK技术新增了哪些功能?

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》