C++聚类算法中的聚类趋势预测

发布时间:2024-11-11 13:54:11 作者:小樊
来源:亿速云 阅读:87

在C++中实现聚类算法时,聚类趋势预测是一个重要的任务。聚类趋势预测可以帮助我们了解数据的分布和潜在结构,从而为后续的数据分析和决策提供依据。以下是一些常用的聚类和趋势预测算法,以及如何在C++中实现它们的基本思路:

1. K-means聚类

K-means是一种广泛使用的聚类算法,它将数据划分为K个簇,每个簇的中心是该簇内所有数据点的均值。

基本步骤:

  1. 初始化:随机选择K个数据点作为初始质心。
  2. 分配数据点到簇:将每个数据点分配到距离最近的质心所在的簇。
  3. 更新质心:计算每个簇内所有数据点的均值,更新质心的位置。
  4. 迭代:重复步骤2和3,直到质心不再发生变化或达到最大迭代次数。

C++实现示例:

#include <iostream>
#include <vector>
#include <cmath>
#include <random>

using namespace std;

struct Point {
    double x, y;
};

double distance(const Point& a, const Point& b) {
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

vector<Point> kmeans(const vector<Point>& points, int k, int max_iterations = 100) {
    vector<Point> centroids(k);
    random_device rd;
    mt19937 gen(rd());
    uniform_int_distribution<> dis(0, points.size() - 1);

    // Initialize centroids
    for (int i = 0; i < k; ++i) {
        centroids[i] = points[dis(gen)];
    }

    for (int iter = 0; iter < max_iterations; ++iter) {
        vector<Point> clusters(k);
        vector<int> cluster_counts(k, 0);

        // Assign points to clusters
        for (const auto& point : points) {
            double min_dist = DBL_MAX;
            int min_cluster = -1;
            for (int i = 0; i < k; ++i) {
                double dist = distance(point, centroids[i]);
                if (dist < min_dist) {
                    min_dist = dist;
                    min_cluster = i;
                }
            }
            clusters[min_cluster].push_back(point);
            cluster_counts[min_cluster]++;
        }

        // Update centroids
        for (int i = 0; i < k; ++i) {
            if (cluster_counts[i] > 0) {
                Point centroid = {0, 0};
                for (const auto& point : clusters[i]) {
                    centroid.x += point.x;
                    centroid.y += point.y;
                }
                centroid.x /= cluster_counts[i];
                centroid.y /= cluster_counts[i];
                centroids[i] = centroid;
            }
        }

        // Check for convergence
        bool converged = true;
        for (int i = 0; i < k; ++i) {
            if (cluster_counts[i] > 0) {
                Point prev_centroid = centroids[i];
                for (const auto& point : clusters[i]) {
                    double dist = distance(point, prev_centroid);
                    if (dist > 1e-6) { // Arbitrary small threshold
                        converged = false;
                        break;
                    }
                }
                if (!converged) break;
                centroids[i] = prev_centroid; // Revert to previous centroid for this iteration
            }
        }

        if (converged) break;
    }

    return centroids;
}

int main() {
    vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
    int k = 2;
    vector<Point> centroids = kmeans(points, k);

    for (const auto& centroid : centroids) {
        cout << "Centroid: (" << centroid.x << ", " << centroid.y << ")" << endl;
    }

    return 0;
}

2. DBSCAN聚类

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,它能够发现任意形状的簇,并识别噪声点。

基本步骤:

  1. 初始化:选择一个点作为核心点,并设置一个邻域半径和最小点数。
  2. 扩展簇:从核心点开始,不断扩展簇,直到没有更多的点可以加入。
  3. 标记噪声点:未被分配到任何簇的点被认为是噪声点。

C++实现示例:

#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <random>

using namespace std;

struct Point {
    double x, y;
};

double distance(const Point& a, const Point& b) {
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

vector<Point> dbscan(const vector<Point>& points, double eps, int min_samples) {
    vector<Point> clusters;
    vector<bool> visited(points.size(), false);
    random_device rd;
    mt19937 gen(rd());
    uniform_int_distribution<> dis(0, points.size() - 1);

    for (int i = 0; i < points.size(); ++i) {
        if (!visited[i]) {
            vector<Point> cluster;
            queue<int> q;
            q.push(i);
            visited[i] = true;

            while (!q.empty()) {
                int point_index = q.front();
                q.pop();
                cluster.push_back(points[point_index]);

                for (const auto& neighbor : points) {
                    if (!visited[neighbor.first] && distance(points[point_index], neighbor) <= eps) {
                        visited[neighbor.first] = true;
                        q.push(neighbor.first);
                    }
                }
            }

            if (cluster.size() >= min_samples) {
                clusters.push_back(cluster);
            }
        }
    }

    return clusters;
}

int main() {
    vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
    double eps = 2;
    int min_samples = 2;
    vector<Point> clusters = dbscan(points, eps, min_samples);

    for (const auto& cluster : clusters) {
        cout << "Cluster:" << endl;
        for (const auto& point : cluster) {
            cout << "(" << point.x << ", " << point.y << ")" << endl;
        }
    }

    return 0;
}

3. 高斯混合模型(GMM)

高斯混合模型是一种基于概率的聚类方法,它假设数据是由多个高斯分布生成的。

基本步骤:

  1. 估计参数:通过EM算法(Expectation Maximization)估计每个高斯分布的参数(均值、协方差和混合系数)。
  2. 聚类:根据每个数据点属于各个高斯分布的概率进行聚类。

C++实现示例:

#include <iostream>
#include <vector>
#include <cmath>
#include <random>

using namespace std;

struct Point {
    double x, y;
};

double multivariate_normal_pdf(const Point& x, const vector<Point>& mean, const vector<vector<double>>& covariance) {
    double exponent = 0.0;
    for (size_t i = 0; i < x.size(); ++i) {
        exponent += pow(x[i] - mean[i], 2) / covariance[i][i];
    }
    return exp(-0.5 * exponent) / sqrt((2 * M_PI) * pow(covariance[0][0], covariance.size()));
}

vector<vector<Point>> gmm(const vector<Point>& points, int num_components, double max_iterations = 100) {
    vector<vector<Point>> clusters(num_components);
    vector<Point> means(num_components);
    vector<vector<double>> covariances(num_components);
    vector<double> weights(num_components, 1.0 / num_components);

    // Initialize means and covariances randomly
    random_device rd;
    mt19937 gen(rd());
    uniform_int_distribution<> dis(0, points.size() - 1);

    for (int i = 0; i < num_components; ++i) {
        int index = dis(gen);
        means[i] = points[index];
        covariances[i] = {{1, 0}, {0, 1}}; // Identity matrix
    }

    for (int iter = 0; iter < max_iterations; ++iter) {
        vector<double> log_likelihood(num_components, 0.0);

        // E-step: Compute posterior probabilities
        for (size_t i = 0; i < points.size(); ++i) {
            double max_prob = -1.0;
            int max_cluster = -1;
            for (int j = 0; j < num_components; ++j) {
                double prob = multivariate_normal_pdf(points[i], means[j], covariances[j]) * weights[j];
                if (prob > max_prob) {
                    max_prob = prob;
                    max_cluster = j;
                }
            }
            log_likelihood[max_cluster] += log(max_prob);
        }

        // M-step: Update parameters
        double total_log_likelihood = accumulate(log_likelihood.begin(), log_likelihood.end(), 0.0);
        for (int j = 0; j < num_components; ++j) {
            weights[j] = exp(log_likelihood[j] - total_log_likelihood);
            weights[j] /= accumulate(weights.begin(), weights.end(), 0.0);

            Point sum = {0, 0};
            for (size_t i = 0; i < points.size(); ++i) {
                if (j == max_cluster) {
                    sum.x += points[i].x;
                    sum.y += points[i].y;
                }
            }
            means[j] = sum / points.size();

            vector<double> sum_cov(4, 0.0);
            for (size_t i = 0; i < points.size(); ++i) {
                if (j == max_cluster) {
                    sum_cov[0] += pow(points[i].x - means[j].x, 2);
                    sum_cov[1] += pow(points[i].y - means[j].y, 2);
                    sum_cov[2] += (points[i].x - means[j].x) * (points[i].y - means[j].y);
                    sum_cov[3] += pow(points[i].x - means[j].x, 2) * pow(points[i].y - means[j].y, 2);
                }
            }
            double n = points.size();
            covariances[j][0] = sum_cov[0] / n;
            covariances[j][1] = sum_cov[1] / n;
            covariances[j][2] = sum_cov[2] / n;
            covariances[j][3] = sum_cov[3] / n;
        }
    }

    // Assign points to clusters based on posterior probabilities
    for (size_t i = 0; i < points.size(); ++i) {
        double max_prob = -1.0;
        int max_cluster = -1;
        for (int j = 0; j < num_components; ++j) {
            double prob = multivariate_normal_pdf(points[i], means[j], covariances[j]) * weights[j];
            if (prob > max_prob) {
                max_prob = prob;
                max_cluster = j;
            }
        }
        clusters[max_cluster].push_back(points[i]);
    }

    return clusters;
}

int main() {
    vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
    int num_components = 2;
    vector<vector<Point>> clusters = gmm(points, num_components);

    for (const auto& cluster : clusters) {
        cout << "Cluster:" << endl;
        for (const auto& point : cluster) {
            cout << "(" << point.x << ", " << point.y << ")" << endl;
        }
    }

    return 0;
}

这些算法只是聚类和趋势预测的一部分方法,实际应用中可能需要根据具体需求选择合适的算法并进行调整。希望这些示例能帮助你理解如何在C++中实现这些算法。

推荐阅读:
  1. c++数据指针地址重定向的方法
  2. 如何使用c中变长参数

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++

上一篇:C++聚类算法与强化学习的结合探索

下一篇:C++聚类算法在社交网络影响力分析中的应用

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》