十分钟深入理解HashMap源码

发布时间:2020-07-14 11:55:55 作者:爱码仕i
来源:网络 阅读:340

十分钟深入理解HashMap源码

十分钟就要深入理解HashMap源码,看完你能懂?我觉得得再多看一分钟,才能完全掌握!

十分钟深入理解HashMap源码

终于来到比较复杂的HashMap,由于内部的变量,内部类,方法都比较多,没法像ArrayList那样直接平铺开来说,因此准备从几个具体的角度来切入。

桶结构

HashMap的每个存储位置,又叫做一个桶,当一个Key&Value进入map的时候,依据它的hash值分配一个桶来存储。

看一下桶的定义:table就是所谓的桶结构,说白了就是一个节点数组。

transient Node<K,V>[] table;
transient int size;

节点

HashMap是一个map结构,它不同于Collection结构,不是存储单个对象,而是存储键值对。
因此内部最基本的存储单元是节点:Node。

节点的定义如下:

class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
}

可见节点除了存储key,vaue,hash三个值之外,还有一个next指针,这样一样,多个Node可以形成一个单向列表。这是解决hash冲突的一种方式,如果多个节点被分配到同一个桶,可以组成一个链表。

HashMap内部还有另一种节点类型,叫做TreeNode:

class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
 }

TreeNode是从Node继承的,它可以组成一棵红黑树。为什么还有这个东东呢?上面说过,如果节点的被哈希到同一个桶,那么可能导致链表特别长,这样一来访问效率就会急剧下降。 此时如果key是可比较的(实现了Comparable接口),HashMap就将这个链表转成一棵平衡二叉树,来挽回一些效率。在实际使用中,我们期望这种现象永远不要发生。

有了这个知识,就可以看看HashMap几个相关常量定义了:

static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;

put方法:Key&Value

插入接口:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

put方法调用了私有方法putVal,不过值得注意的是,key的hash值不是直接用的hashCode,最终的hash=(hashCode右移16)^ hashCode。

在将hash值映射为桶位置的时候,取的是hash值的低位部分,这样如果有一批key的仅高位部分不一致,就会聚集的同一个桶里面。(如果桶数量比较少,key是Float类型,且是连续的整数,就会出现这种case)。

执行插入的过程:

V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;

        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;

        //代码段1
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);            
        else {
            Node<K,V> e; K k;
            //代码段2
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //代码段3    
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //代码段4
                for (int binCount = 0; ; ++binCount) {
                    //代码段4.1
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //代码段4.2
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //代码段5
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //代码段6
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

remove方法

了解了put方法,remove方法就容易了,直接讲解私有方法removeNode吧。

public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;

    //代码段1
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {

        //代码段2:
        Node<K,V> node = null, e; K k; V v;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;

        //代码段3:
        else if ((e = p.next) != null) {
            //代码段3.1:
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                //代码段3.2:
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }

        //代码段4:
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {                 
            //代码段4.1:
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            //代码段4.2:
            else if (node == p)
                tab[index] = node.next;
            //代码段4.3:
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

rehash

rehash就是重新分配桶,并将原有的节点重新hash到新的桶位置。

先看两个和桶的数量相关的成员变量

final float loadFactor;
int threshold;

桶的扩展策略,见下面的函数,如果需要的容量是cap,真实扩展的容量是大于cap的一个2的冥次。
这样依赖,每次扩展,增加的容量都是2的倍数。

static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

这是具体的扩展逻辑

Node<K,V>[] resize() {

     //此处省略了计算newCap的逻辑

    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;

                //分支1
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                //分支2
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                //分支3
                else { // preserve order
                    //此处省略了链表拆分逻辑   
                }
        }
    }
    return newTab;
}

由于新桶的数量是旧桶的2的倍数,所以每个旧桶都能对应2个或更多的新桶,互不干扰。 所以上面的迁移逻辑,并不需要检查新桶里面是否有节点。

可见,rehash的代价是很大的,最好在初始化的时候,能够设定一个合适的容量,避免rehash。

最后,虽然上面的代码没有体现,在HashMap的生命周期内,桶的数量只会增加,不会减少。

迭代器

所有迭代器的核心就是这个HashIterator

abstract class HashIterator {
    Node<K,V> next;        // next entry to return
    Node<K,V> current;     // current entry
    int expectedModCount;  // for fast-fail
    int index;             // current slot

    final Node<K,V> nextNode() {
        Node<K,V>[] t;
        Node<K,V> e = next;
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        if (e == null)
            throw new NoSuchElementException();
        if ((next = (current = e).next) == null && (t = table) != null) {
            do {} while (index < t.length && (next = t[index++]) == null);
        }
        return e;
    }
}

简单起见,只保留了next部分的代码。原理很简单,next指向下一个节点,肯定处在某个桶当中(桶的位置是index)。那么如果同一个桶还有其他节点,那么一定可以顺着next.next来找到,无论这是一个链表还是一棵树。否则扫描下一个桶。

有了上面的节点迭代器,其他用户可见的迭代器都是通过它来实现的。

final class KeyIterator extends HashIterator
    implements Iterator<K> {
    public final K next() { return nextNode().key; }
}

final class ValueIterator extends HashIterator
    implements Iterator<V> {
    public final V next() { return nextNode().value; }
}

final class EntryIterator extends HashIterator
    implements Iterator<Map.Entry<K,V>> {
    public final Map.Entry<K,V> next() { return nextNode(); }
}

视图

KeySet的部分代码:这并不是一个独立的Set,而是一个视图,它的接口内部访问的都是HashMap的数据。

final class KeySet extends AbstractSet<K> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator<K> iterator()     { return new KeyIterator(); }
    public final boolean contains(Object o) { return containsKey(o); }
    public final boolean remove(Object key) {
        return removeNode(hash(key), key, null, false, true) != null;
    }
}

EntrySet、Values和KeySet也是类似的,不再赘述。

要点总结

1、key&value存储在节点中;
2、节点有可能是链表节点,也有可能是树节点;
3、依据key哈希值给节点分配桶;
4、如果桶里面有多个节点,那么要么形成一个链表,要么形成一颗树;
5、装载因子限制的了节点和桶的数量比例,必要时会扩展桶的数量;
6、桶数量必然是2的冥次,重新分配桶的过程叫做rehash,这是很昂贵的操作;

写在最后

十分钟深入理解HashMap源码

推荐阅读:
  1. HashMap源码解析
  2. HashMap 源码浅析 1.8

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

hashmap java 架构

上一篇:HTML&CSS基础学习笔记7-高亮文本及组合使用

下一篇:支付宝17年新春红包技术体系剖析

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》