您好,登录后才能下订单哦!
本篇内容介绍了“使用Lock接口的方法有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
Lock接口主要由以下6个方法
// 获取锁 void lock() // 如果当前线程未被中断,则获取锁,可以响应中断 void lockInterruptibly() // 返回绑定到此 Lock 实例的新 Condition 实例 Condition newCondition() // 仅在调用时锁为空闲状态才获取该锁,可以响应中断 boolean tryLock() // 如果锁在给定的等待时间内空闲,并且当前线程未被中断,则获取锁 boolean tryLock(long time, TimeUnit unit) // 释放锁 void unlock()
下面来逐个分析Lock接口中每个方法。lock()、tryLock()、tryLock(long time, TimeUnit unit) 和 lockInterruptibly()都是用来获取锁的。unLock()方法是用来释放锁的。newCondition() 返回 绑定到此 Lock 的新的 Condition 实例 ,用于线程间的协作,详细内容请查找关键词:线程间通信与协作。
1). lock()
在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?首先,lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。在前面已经讲到,如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此,一般来说,使用Lock必须在try…catch…块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:
Lock lock = ...; lock.lock();try{//处理任务}catch(Exception ex){ }finally{ lock.unlock(); //释放锁}
2). tryLock() & tryLock(long time, TimeUnit unit)
tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true;如果获取失败(即锁已被其他线程获取),则返回false,也就是说,这个方法无论如何都会立即返回(在拿不到锁时不会一直在那等待)。
tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false,同时可以响应中断。如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
一般情况下,通过tryLock来获取锁时是这样使用的:
Lock lock = ...;if(lock.tryLock()) { try{ //处理任务 }catch(Exception ex){ }finally{ lock.unlock(); //释放锁 } }else {//如果不能获取锁,则直接做其他事情}
3). lockInterruptibly()
lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程 正在等待获取锁,则这个线程能够 响应中断,即中断线程的等待状态。例如,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。
由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出 InterruptedException,但推荐使用后者,原因稍后阐述。因此,lockInterruptibly()一般的使用形式如下:
public void method() throws InterruptedException { lock.lockInterruptibly();try { //..... }finally { lock.unlock(); } }
注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为interrupt()方法只能中断阻塞过程中的线程而不能中断正在运行过程中的线程。因此,当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,那么只有进行等待的情况下,才可以响应中断的。与 synchronized 相比,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
Lock的实现类 ReentrantLock
ReentrantLock,即 可重入锁。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例学习如何使用 ReentrantLock。
构造方法(不带参数 和带参数 true: 公平锁; false: 非公平锁):
/** * Creates an instance of {@code ReentrantLock}. * This is equivalent to using {@code ReentrantLock(false)}. */public ReentrantLock() { sync = new NonfairSync(); }/** * Creates an instance of {@code ReentrantLock} with the * given fairness policy. * * @param fair {@code true} if this lock should use a fair ordering policy */public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); }
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock;public class LockThread { Lock lock = new ReentrantLock(); public void lock(String name) { // 获取锁 lock.lock(); try { System.out.println(name + " get the lock"); // 访问此锁保护的资源 } finally { // 释放锁 lock.unlock(); System.out.println(name + " release the lock"); } } public static void main(String[] args) { LockThread lt = new LockThread(); new Thread(() -> lt.lock("A")).start(); new Thread(() -> lt.lock("B")).start(); } }
从执行结果可以看出,A线程和B线程同时对资源加锁,A线程获取锁之后,B线程只好等待,直到A线程释放锁B线程才获得锁。
总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:
1)synchronized是Java语言的关键字,因此是内置特性,Lock不是Java语言内置的,Lock是一个接口,通过实现类可以实现同步访问。
2)synchronized是在JVM层面上实现的,不但可以通过一些监控工具监控synchronized的锁定,而且在代码执行时出现异常,JVM会自动释放锁定,但是使用Lock则不行,lock是通过代码实现的,要保证锁定一定会被释放,就必须将unLock()放到finally{}中
3)在资源竞争不是很激烈的情况下,Synchronized的性能要优于ReetrantLock,但是在资源竞争很激烈的情况下,Synchronized的性能会下降几十倍,但是ReetrantLock的性能能维持常态。
ReadWriteLock锁
ReadWriteLock 接口只有两个方法:
//返回用于读取操作的锁 Lock readLock() //返回用于写入操作的锁 Lock writeLock()
ReadWriteLock 维护了一对相关的锁,一个用于只读操作,另一个用于写入操作。只要没有 writer,读取锁可以由多个 reader 线程同时保持,而写入锁是独占的。
【例子】三个线程同时对一个共享数据进行读写
import java.util.Random;import java.util.concurrent.locks.ReadWriteLock;import java.util.concurrent.locks.ReentrantReadWriteLock;class Queue {//共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。private Object data = null; ReadWriteLock lock = new ReentrantReadWriteLock();// 读数据public void get() {// 加读锁 lock.readLock().lock();try { System.out.println(Thread.currentThread().getName() + ">); Thread.sleep((long) (Math.random() * 1000)); System.out.println(Thread.currentThread().getName() + " have read data :" + data); } catch (InterruptedException e) { e.printStackTrace(); } finally {// 释放读锁 lock.readLock().unlock(); } }// 写数据public void put(Object data) {// 加写锁 lock.writeLock().lock();try { System.out.println(Thread.currentThread().getName() + " be ready to write data!"); Thread.sleep((long) (Math.random() * 1000));this.data = data; System.out.println(Thread.currentThread().getName() + " have write data: " + data); } catch (InterruptedException e) { e.printStackTrace(); } finally {// 释放写锁 lock.writeLock().unlock(); } } }public class ReadWriteLockDemo {public static void main(String[] args) {final Queue queue = new Queue();//一共启动6个线程,3个读线程,3个写线程for (int i = 0; i < 3; i++) {//启动1个读线程new Thread() {public void run() {while (true) { queue.get(); } } }.start();//启动1个写线程new Thread() {public void run() {while (true) { queue.put(new Random().nextInt(10000)); } } }.start(); } } }
执行结果
四:锁的相关概念介绍
1、可重入锁
如果锁具备可重入性,则称作为 可重入锁 。像 synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了 锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。
class MyClass {public synchronized void method1() { method2(); }public synchronized void method2() { } }
上述代码中的两个方法method1和method2都用synchronized修饰了。假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是,这就会造成死锁,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。
2、可中断锁
顾名思义,可中断锁就是可以响应中断的锁。在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。在前面演示tryLock(long time, TimeUnit unit)和lockInterruptibly()的用法时已经体现了Lock的可中断性。
3、公平锁
公平锁即 尽量 以请求锁的顺序来获取锁。比如,同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。而非公平锁则无法保证锁的获取是按照请求锁的顺序进行的,这样就可能导致某个或者一些线程永远获取不到锁。
在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。而对于ReentrantLock 和 ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁
另外一个就是回答上一篇文章的提问(Lock是悲观锁还是乐观锁的问题),详情可以看java悲观锁与乐观锁这篇文章
我们先来看下ReentrantLock这个类的Lock方法
public void lock() { sync.lock(); }
接着我们继续看下sync这个对象的初始化(这里是非公平锁)
public ReentrantLock() { sync = new NonfairSync(); }
然后我们继续看下NonfairSync这个类的lock方法
/** * Sync object for non-fair locks */ static final class NonfairSync extends Sync { private static final long serialVersionUID = 7316153563782823691L; /** * Performs lock. Try immediate barge, backing up to normal * acquire on failure. */ final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } }
这里有个compareAndSetState方法,我们继续跟踪
protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }
这里是不是很熟悉,这里调用的是unsafe的compareAndSwapInt方法,也就是说实现了CAS算法。
我们知道ReentrantLock创建时有公平锁和非公平锁,下面我们看下公平锁的是不是也实现CAS算法
/** * Creates an instance of {@code ReentrantLock} with the * given fairness policy. * * @param fair {@code true} if this lock should use a fair ordering policy */ public ReentrantLock(boolean fair) { // fair=true时为公平锁,fair=false时为非公平锁 sync = fair ? new FairSync() : new NonfairSync(); }
下面我们看下FairSync类的源码
/** * Sync object for fair locks */ static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } }
我们可以看到lock方法调用的是acquire这个方法,跟踪进去后发现这里有很多逻辑判断。这是因为公平锁需要判断队列先进先出等情况,我们忽略其他。关注addWaiter这个方法
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
通过查看addWaiter源码可以看到这里有用到compareAndSetTail这个方法。
private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; }
查看compareAndSetTail源码可以看到这里用到了unsafe的compareAndSwapObject方法,所以Lock的公平锁依然用的是CAS算法
/** * CAS tail field. Used only by enq. */ private final boolean compareAndSetTail(Node expect, Node update) { return unsafe.compareAndSwapObject(this, tailOffset, expect, update); }
“使用Lock接口的方法有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。