您好,登录后才能下订单哦!
1、AVL树的插入
(1)、必须追踪插入路径,要对bf进行调整,此时不能用递归;
(2)、用栈保留路径信息,每次插入均是以叶子结点插入的;
(3)、插入一个新结点,自身的bf不用调整,其初始化为0;要调整的是栈中的平衡因子,关键在双旋时,平衡因子的调整要小心,还是调整栈中结点的平衡因子;
2、AVL树的插入算法
思路:
(1)、按照二叉搜索树的非递归实现插入数据;
(2)、 有一个父节点,记录信息,并且入栈;
(3)、栈非空,出栈,判断插入是左/右,此时给栈顶的结点平衡因子++/--,
(4)、判断bf的值,进行不同情况的处理,针对bf不满足平衡,将根据情况调用4个旋转函数进行调整;
(5)、最后实行连接工作,看栈,空的话,直接给root,否则读栈顶,比较数据大小,连接在左/右孩子;
均由C++实现:
要记住的是:栈中只保存的是插入结点的路径,其余结点的信息不在保存;
如何判断写出要用4个旋转函数,并且此时情形如何?
以上仅仅是一种情况,但是parent和p的指向我们已经理解了,其他的情形就可以看出来了;
template<typename Type> bool AVLTree<Type>::insert(AVLNode<Type> *&t, const Type &x){ AVLNode<Type> *p = t; AVLNode<Type> *parent = NULL; // 记录前驱结点,方便连接和调整平衡因子 stack<AVLNode<Type> *> st; //用栈记录插入的路径,方便调整栈中结点的平衡因子; int sign; while(p != NULL){ if(x == p->data){ //要插入的数据和AVL树中的数字相同,则返回失败! return false; } parent = p; st.push(parent); //找过的入栈 if(x < p->data){ p = p->leftChild; }else if(x > p->data){ p = p->rightChild; } } // 找插入位置,不用递归,就是为了记录路径信息 p = new AVLNode<Type>(x); if(parent == NULL){ t = p; //判断是不是第一个结点,进行root的连接; return true; } if(x < parent->data){ //此时通过父节点的数据判断插入的是左还是右 parent->leftChild = p; }else{ parent->rightChild = p; } //新插入点的bf为0,关键是栈中的平衡因子的调整 /////////////////////////////////////////////////////// 以上完成插入工作 while(!st.empty()){ //栈不空,出栈顶元素 parent = st.top(); st.pop(); if(p == parent->leftChild){ //判断插入的是父节点的左/右孩子, parent->bf--; //让其bf++/--; }else{ parent->bf++; } //以下判断栈中的平衡因子,看是否需要进行旋转调整 if(parent->bf == 0){ //bf=0,直接跳出循环 break; } if(parent->bf==1 || parent->bf==-1){ p = parent; //此时在向上走,判断bf; }else{ //以下的bf为2/-2;利用标志判断左右旋; sign = parent->bf > 0 ? 1 : -1; if(p->bf == sign){ //符号相同为单旋 if(sign == 1){ //为1左旋 RotateL(parent); }else{ RotateR(parent); //右旋 } }else{ //符号不同,为双旋 if(sign == 1){ RotateRL(parent); //为1右左 }else{ RotateLR(parent); } } /* 以下方法也可以判断左右旋 else { if(parent->bf < 0) //左边 { if(p->bf<0 && p==parent->leftChild) // / 只能是左孩子 { //RotateR(parent); } else if(p->bf>0 && p == parent->leftChild) // < { //RotateLR(parent); } } else { if(p->bf>0 && p==parent->rightChild) // \ { //RotateL(parent); } else if(p->pf<0 && p==parent->rightChild) // > { //RotateRL(parent); } } } */ break; } } if(st.empty()){ //通过旋转函数,此时parent指向当前根节点; t = parent; //此时调到栈底了,旋转后将更改root的指向 }else{ AVLNode<Type> *tmp = st.top(); //当前的栈顶结点 if(parent->data < tmp->data){ tmp->leftChild = parent; }else{ tmp->rightChild = parent; } } return true; }
3、完整代码、测试代码、测试结果
(1)、完整代码
#ifndef _AVL_TREE_H_ #define _AVL_TREE_H_ #include<iostream> //引入头文件 #include<stack> //要用栈保存路径信息 using namespace std; template<typename Type> class AVLTree; template<typename Type> class AVLNode{ //AVL树的结点 friend class AVLTree<Type>; public: AVLNode() : data(Type()), leftChild(NULL), rightChild(NULL), bf(0){} AVLNode(Type d, AVLNode *left = NULL, AVLNode *right = NULL) : data(d), leftChild(left), rightChild(right), bf(0){} ~AVLNode(){} private: Type data; AVLNode *leftChild; AVLNode *rightChild; int bf; //多了一个平衡因子 }; template<typename Type> class AVLTree{ //AVL树的类型 public: AVLTree() : root(NULL){} public: bool insert(const Type &x){ return insert(root, x); } void inOrder()const{ inOrder(root); } protected: void inOrder(AVLNode<Type> *t)const{ if(t != NULL){ inOrder(t->leftChild); cout<<t->data<<" : "<<t->bf<<endl;; inOrder(t->rightChild); } } bool insert(AVLNode<Type> *&t, const Type &x); //插入函数 void RotateR(AVLNode<Type> *&ptr){ //右旋 AVLNode<Type> *subR = ptr; ptr = ptr->leftChild; subR->leftChild = ptr->rightChild; ptr->rightChild = subR; ptr->bf = subR->bf = 0; } void RotateL(AVLNode<Type> *&ptr){ //左旋 AVLNode<Type> *subL = ptr; ptr = subL->rightChild; subL->rightChild = ptr->leftChild; ptr->leftChild = subL; subL->bf = ptr->bf = 0; } void RotateLR(AVLNode<Type> *&ptr){ //先左后右旋转 AVLNode<Type> *subR = ptr; AVLNode<Type> *subL = ptr->leftChild; ptr = subL->rightChild; subL->rightChild = ptr->leftChild; ptr->leftChild = subL; if(ptr->bf <= 0){ subL->bf = 0; }else{ subL->bf = -1; } subR->leftChild = ptr->rightChild; ptr->rightChild = subR; if(ptr->bf == -1){ subR->bf = 1; }else{ subR->bf = 0; } ptr->bf = 0; } void RotateRL(AVLNode<Type> *&ptr){ //先右后左旋转 AVLNode<Type> *subL = ptr; AVLNode<Type> *subR = ptr->rightChild; ptr = subR->leftChild; subR->leftChild = ptr->rightChild; ptr->rightChild = subR; if(ptr->bf >=0){ subR->bf = 0; }else{ subR->bf = 1; } subL->rightChild = ptr->leftChild; ptr->leftChild = subL; if(ptr->bf == 1){ subL->bf = -1; }else{ subL->bf = 0; } ptr->bf = 0; } private: AVLNode<Type> *root; }; template<typename Type> bool AVLTree<Type>::insert(AVLNode<Type> *&t, const Type &x){ AVLNode<Type> *p = t; AVLNode<Type> *parent = NULL; // 记录前驱结点,方便连接和调整平衡因子 stack<AVLNode<Type> *> st; //用栈记录插入的路径,方便调整栈中结点的平衡因子; int sign; while(p != NULL){ if(x == p->data){ //要插入的数据和AVL树中的数字相同,则返回失败! return false; } parent = p; st.push(parent); //找过的入栈 if(x < p->data){ p = p->leftChild; }else if(x > p->data){ p = p->rightChild; } } // 找插入位置,不用递归,就是为了记录路径信息 p = new AVLNode<Type>(x); if(parent == NULL){ t = p; //判断是不是第一个结点,进行root的连接; return true; } if(x < parent->data){ //此时通过父节点的数据判断插入的是左还是右 parent->leftChild = p; }else{ parent->rightChild = p; } //新插入点的bf为0,关键是栈中的平衡因子的调整 /////////////////////////////////////////////////////// 以上完成插入工作 while(!st.empty()){ //栈不空,出栈顶元素 parent = st.top(); st.pop(); if(p == parent->leftChild){ //判断插入的是父节点的左/右孩子, parent->bf--; //让其bf++/--; }else{ parent->bf++; } //以下判断栈中的平衡因子,看是否需要进行旋转调整 if(parent->bf == 0){ //bf=0,直接跳出循环 break; } if(parent->bf==1 || parent->bf==-1){ p = parent; //此时在向上走,判断bf; }else{ //以下的bf为2/-2;利用标志判断左右旋; sign = parent->bf > 0 ? 1 : -1; if(p->bf == sign){ //符号相同为单旋 if(sign == 1){ //为1左旋 RotateL(parent); }else{ RotateR(parent); //右旋 } }else{ //符号不同,为双旋 if(sign == 1){ RotateRL(parent); //为1右左 }else{ RotateLR(parent); } } /* 以下方法也可以判断左右旋 else { if(parent->bf < 0) //左边 { if(p->bf<0 && p==parent->leftChild) // / 只能是左孩子 { //RotateR(parent); } else if(p->bf>0 && p == parent->leftChild) // < { //RotateLR(parent); } } else { if(p->bf>0 && p==parent->rightChild) // \ { //RotateL(parent); } else if(p->pf<0 && p==parent->rightChild) // > { //RotateRL(parent); } } } */ break; } } if(st.empty()){ //通过旋转函数,此时parent指向当前根节点; t = parent; //此时调到栈底了,旋转后将更改root的指向 }else{ AVLNode<Type> *tmp = st.top(); //当前的栈顶结点 if(parent->data < tmp->data){ tmp->leftChild = parent; }else{ tmp->rightChild = parent; } } return true; } #endif
(2)、测试代码
#include"avlTree.h" int main(void){ int ar[] = {16, 3, 7, 11, 9, 26, 18, 14, 15,}; int n = sizeof(ar) / sizeof(int); AVLTree<int> avl; for(int i = 0; i < n; i++){ avl.insert(ar[i]); } avl.inOrder(); return 0; }
(3)、测试结果
测试最终形成的AVL树:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。